
TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 1

Um Estudo Acerca do Uso de IA Generativa no
Apoio à Aprendizagem de Programação

Rafael Almeida de Bem∗, Profa. Dra. Andréa Aparecida Konzen∗∗
∗Aluno de Ciência da Computação na Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)

∗∗Orientadora, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)

Trabalho de Conclusão de Curso
Ciência da Computação, Pontifícia Universidade Católica do Rio Grande do Sul

Resumo—Avanços recentes em Inteligência Artificial
(IA) têm transformado sua aplicação de uma explora-
ção teórica para implementação prática, criando novas
oportunidades e desafios em ambientes de aprendiza-
gem. Este trabalho de conclusão de curso, realizado na
Pontifícia Universidade Católica do Rio Grande do Sul,
explora como a IA Generativa pode aprimorar experi-
ências de aprendizagem na disciplina de Fundamentos
da Programação. O sistema desenvolvido utiliza gran-
des modelos de linguagem e emprega conceitos-chave
como transformers, zero-shot prompting e Retrieval-
Augmented Generation para fornecer assistência perso-
nalizada aos estudantes, gerando respostas relevantes
e sensíveis ao contexto. Os resultados destacam tanto
os benefícios quanto as limitações da IA Generativa em
âmbitos de aprendizagem.

Palavras-chave—Inteligência Artificial Generativa,
aprendizado em ciência da computação, grandes mo-
delos de linguagem, transformers, Retrieval-Augmented
Generation, respostas sensíveis ao contexto.

Abstract—Recent advances in artificial intelligence
(AI) have transformed its application from theoretical
exploration to practical implementation, creating new
opportunities and challenges in learning environments.
This undergraduate thesis, conducted at the Pontifícia
Universidade Católica do Rio Grande do Sul, explores
how generative AI can enhance learning experiences
in the Fundamentals of Programming course. The
developed system utilizes large language models and
employs key concepts such as transformers, zero-shot
prompting, and Retrieval-Augmented Generation to
provide personalized assistance to students, generating
relevant and context-aware responses. The results high-
light both the benefits and limitations of generative AI
in improving learning outcomes.

Key-words—Generative Artificial Intelligence, lear-
ning in computer science, large language models, trans-
formers, Retrieval-Augmented Generation, context-
sensitive responses.

I. Introdução
A tecnologia tornou-se parte de todos os aspectos da vida
moderna, influenciando indústrias e profissões em todos
os setores [1]. No mercado de trabalho, a proficiência em
tecnologia não é vista como uma vantagem, mas como
uma necessidade, até mesmo em funções que não são
diretamente ligadas à tecnologia [2]. Essa necessidade
de habilidades tecnológicas onipresente traz um desafio
significativo: aprender a programar.

Programação é uma habilidade presente em grande
parte das atividades contemporâneas, e aprender a progra-
mar não é trivial. A curva de aprendizado íngreme pode ser
desanimadora, levando a altas taxas de evasão entre estu-
dantes da computação [3], [4]. Esse desafio se agrava pelo
fato de que métodos de aprendizagem tradicionais podem
não atender efetivamente às necessidades de aprendizado
dos discentes [5]–[9].

Um conceito chave para abordar esse problema é o
pensamento computacional, entendido como “uma abor-
dagem à resolução de problemas, design de sistemas e
compreensão de comportamento humano baseada nos con-
ceitos fundamentais da computação”1 [10]. Ele fornece
uma estrutura que pode ajudar a tornar o aprendizado
de programação mais acessível e intuitivo [7], [10], [11],
[11], [12].

A Inteligência Artificial (IA), em específico a IA Gene-
rativa, se apresenta como uma ferramenta de apoio pro-
missora no aprendizado da programação. A IA se mostra
capaz de fornecer assistência personalizada, gerar exem-
plos e dar feedbacks em tempo real, tornando o processo
de aprendizagem mais envolvente e menos assustador [7],
[13]–[17].

Adicionar uma ferramenta de apoio ao aprendizado
personalizada não só melhora os resultados do aprendi-
zado, mas também contribui para um corpo discente mais
satisfeito e motivado [8], [9], [18]

Sendo assim, este estudo tem como objetivo investigar a
utilização de Inteligência Artificial Generativa como uma
ferramenta auxiliar na aprendizagem de programação,
examinando os potenciais benefícios e limitações dessa
abordagem. É apresentado um sistema que integra mate-
riais didáticos de disciplinas à IA, fomentando ambientes
personalizados de aprendizagem e coletando informações
valiosas para análise do aprendizado dos discentes por
meio do corpo docente. Como estudo de caso, foi escolhida
a disciplina de Fundamentos da Programação, que faz
parte do primeiro nível dos cursos de graduação da área da
Computação, na maioria das instituições. Nesta disciplina
são trabalhados conceitos básicos de programação que são
essenciais para a resolução de problemas e necessários para

1[Computational thinking is] an approach to solving problems,
designing systems and understanding human behaviour that draws
on concepts fundamental to computing.

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 2

sua implementação usando uma linguagem de programa-
ção. Este artigo é resultado do Trabalho de Conclusão de
Curso em Ciência da Computação da Pontifícia Universi-
dade Católica do Rio Grande do Sul.

Este texto está estruturado em onze seções: a Seção II.
apresenta conceitos fundamentais da Inteligência Artifi-
cial, a Seção III. apresenta a revisão da literatura re-
lacionada ao aprendizado de programação e ao uso de
IA Generativa na educação e aprendizagem, a Seção IV.
consiste no desenvolvimento do trabalho e do sistema
apresentado, as Seções V. a VII. consistem em demonstrar
como o sistema pode ser implantado, a Seção VIII. traz os
resultados obtidos da utilização desse projeto, a Seção IX.
engloba as limitações desse estudo, a Seção X. apresenta
as conclusões obtidas, e a Seção XI. expõe ideias para
trabalhos futuros.

II. Conceitos de Inteligência Artificial
Essa seção apresenta uma breve fundamentação teórica,
abordando desde conceitos básicos como Inteligência Ar-
tificial e redes neurais, até conceitos mais avançados como
aprendizado de máquina, transformers e técnicas de refi-
namento.

2.1 Inteligência Artificial
Inteligência Artificial (IA) é definida como “o estudo de
agentes que recebem informações do ambiente e realizam
ações”2 [19]. Além de compreender a inteligência, a IA
busca também criar agentes ou entidades inteligentes [19].
Esta é uma área multidisciplinar que inclui subáreas como
aprendizado de máquina, redes neurais, Processamento
de Linguagem Natural, visão computacional, e robótica.
Embora os termos IA e aprendizado de máquina serem
frequentemente utilizados como sinônimos [20], a IA é um
campo mais amplo que engloba várias técnicas e métodos.
O aprendizado de máquina, por sua vez, é uma subárea da
IA que foca em construir sistemas que aprendem a partir
de dados. Exemplos de técnicas de IA que não envolvem
aprendizado de máquina incluem sistemas especialistas e
algoritmos de busca.

2.2 Redes neurais
Redes neurais são sistemas computacionais não-lineares
que modelam a maneira como o cérebro humano realiza
determinadas tarefas. Elas são compostas por unidades
de processamento simples chamadas neurônios artificiais,
organizados em camadas e interligados por sinapses ou
arestas.

Segundo [21], “uma rede neural é um processador mas-
sivamente paralelo composto por unidades de processa-
mento simples que é naturalmente propensa a guardar
sabedoria adquirida por experiência e torná-la disponível
para uso”3. As unidades de processamento são chamadas

2[AI is] the study of agents that receive percepts from the environ-
ment and perform actions.

3A neural network is a massively parallel distributed processor
made up of simple processing units that has a natural propensity for
storing experiential knowledge and making it available for use.

de neurônios artificiais e são organizadas em camadas
com pelo menos um neurônio cada. A primeira camada
é chamada de camada de entrada, a última camada é
chamada de camada de saída, e as intermediárias são
chamadas de ocultas. Caso haja mais de uma camada
oculta, a rede é chamada de rede neural profunda, e caso
haja apenas um neurônio em toda a rede, ela é chamada
de perceptron [22]. Os neurônios são conectados entre si
por arestas (ou sinapses), que possuem pesos que são
ajustados durante o treinamento da rede. Existem diversas
arquiteturas de redes neurais. A arquitetura transformer é
usada pelos modelos de linguagem utilizados, e é abordada
na Seção 2.3.

O treinamento de uma rede neural consiste em ajustar os
pesos dessas conexões entre neurônios de forma que a rede
consiga se aproximar de uma função alvo 𝑓 (𝑥). Na prática,
as redes apenas aproximam a função alvo, resultando na
função 𝑓 (𝑥). Redes neurais com ao menos uma camada
também são conhecidas como aproximadores universais,
pois são capazes de aproximar qualquer função contínua
𝑓 (𝑥) em um intervalo finito [23]. Para que uma rede
neural possa aproximar uma função não-linear (contínua),
é necessário que a função de ativação dos neurônios seja
não-linear.

2.2.1 Função de ativação: A função de ativação define
como será calculada a saída de um neurônio dado suas
entradas (𝑥1, . . . , 𝑥𝑛) e seus pesos (𝑤𝑘1, . . . , 𝑤𝑘𝑛). Existem
diversas funções de ativação, como a função binária, linear,
logística, ReLU, Leaky ReLU, softmax, Swish, GLU, e
SwiGLU. Cada função possui características e aplicações
específicas, introduzindo não-linearidade na rede e per-
mitindo que ela aproxime funções complexas. As funções
relevantes para este trabalho são apresentadas a seguir.
Função Swish: Definida pela Equação 1 e proposta
por [24]. A Swish é uma função de ativação suave que
tende a ser igual ou melhor do que a ReLU nas áreas
testadas [24].

𝜑(𝑣) = Swish(𝑣) = 𝑣 · 𝜎(𝛽𝑣) (1)

onde 𝜎(𝑣) é a função sigmoide logística e 𝛽 é um hiperpa-
râmetro variável ou constante que controla a inclinação da
função. A função Swish é diferenciável em todos os pontos
e tem mostrado desempenho superior em várias tarefas de
aprendizado de máquina devido à sua propriedade não-
monótona [24].
Função GLU (Gated Linear Unit): Definida pela
Equação 2 e proposta por [25]. A GLU é uma função de
ativação que combina a função ReLU com uma porta de
ativação sigmoide.

𝜑(𝑣) = GLU(𝑣) = 𝑣 · 𝜎(𝑊𝑣 + 𝑏) (2)

onde 𝑊 e 𝑏 são pesos e bias da porta sigmoide, respecti-
vamente, e são parâmetros treináveis.
Função SwiGLU: Definida pela Equação 3, apresentada
por [26] e utilizada pelo LLaMA 2 em diante [27], [28].
A SwiGLU é uma função de ativação que combina a

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 3

função Swish com a GLU, oferecendo o estado-da-arte em
desempenho e eficiência.

𝜑(𝑣) = SwiGLU(𝑣) = Swish𝛽 (𝑊𝑣 + 𝑏) ⊗ 𝜎(𝑉𝑣 + 𝑐) (3)

onde ⊗ é o operador de multiplicação matricial elemento
a elemento, 𝛽, 𝑊 , 𝑏, 𝑉 e 𝑐 são hiperparâmetros treináveis.

Para determinar qual função de ativação utilizar, é
necessário considerar a natureza do problema que está
sendo resolvido e testar diferentes funções para determinar
qual melhor se adapta a função alvo; em outras palavras,
qual função de ativação 𝜑(𝑥) gera 𝑓 (𝑥) mais próxima de
𝑓 (𝑥).

2.3 Transformers
Transformers é uma família de algoritmos que organizados
estabelecem uma arquitetura de aprendizado profundo
proposta por [29]. A arquitetura evita o uso de recor-
rências, substituindo-as por mecanismos de atenção que
permitem a conexão de dependências entre entrada e
saída. Além disso, a arquitetura é altamente paralelizável,
o que a torna mais eficiente em relação a redes neurais
recorrentes (RNN), arquitetura utilizada anteriormente.
Redes neurais baseadas em transformers são redes total-
mente conectadas que seguem uma estrutura de codifica-
ção e decodificação similar à utilizada em RNNs, onde
o codificador (encoder) recebe uma entrada (𝑥1, . . . , 𝑥𝑛)
e a codifica em um vetor z = (𝑧1, . . . , 𝑧𝑛), que é então
decodificado pelo decodificador (decoder) em uma saída
(𝑦1, . . . , 𝑦𝑚) [29]. O conceito de atenção é descrito como
um mapeamento de uma consulta e um conjunto de pares
chave-valor para uma saída, onde a saída é uma soma
ponderada das valores, e os pesos são determinados por
uma função de compatibilidade entre a consulta e a chave
correspondente [29]. Segundo [29], transformers utilizam
a função de ativação softmax, uma função de ativação
comummente utilizada em redes neurais para produzir
distribuições de probabilidade sobre múltiplas classes.

Existem três tipos de transformers: encoder-only,
decoder-only e encoder-decoder. A arquitetura encoder-
decoder é aquela proposta por [29], que consiste em ca-
madas de encoders que codificam as entradas em tokens
vetoriais munidos de contexto, e camadas de decoders
que decodificam esses tokens em saídas. O decoder é
similar ao encoder em sua arquitetura com a adição de
outra camada de atenção que permite que o decoder se
concentre em partes específicas da entrada. Para evitar
que o decoder acesse informações futuras, uma máscara de
atenção (masked self-attention) é aplicada, onde a atenção
é limitada a tokens anteriores ao token atual [29]. Isso
leva a uma arquitetura autoregressiva, onde a saída de um
token depende apenas dos tokens anteriores.

2.3.1 Hugging Face Transformers: Transformers4 é uma
biblioteca de código aberto desenvolvida pela Hugging
Face que implementa modelos de linguagem baseados em
transformers [29], [30]. A biblioteca é amplamente utili-
zada em tarefas de Processamento de Linguagem Natural

4Disponível em: https://github.com/huggingface/transformers

e aprendizado de máquina, e possui uma vasta gama de
modelos pré-treinados disponíveis para uso em diversas
tarefas. Essa biblioteca facilita tarefas como treinamento,
fine-tuning, inferência e avaliação de modelos de lingua-
gem, e é amplamente utilizada em pesquisas e aplicações
práticas [30].

2.4 Aprendizado de máquina
O aprendizado de máquina é uma subárea da IA que
estuda como algoritmos podem melhorar seu desempenho
em tarefas a partir de experiências passadas [19], [31].
Ele é dividido em três categorias principais: aprendizado
supervisionado, não supervisionado e por reforço. O mo-
delo “aprende” após um conjunto de etapas denominado
treinamento, que geralmente é dividido em três etapas:

1) Forward: a entrada é passada pela rede neural, onde
os pesos são aplicados e a saída é calculada.

2) Loss: a saída 𝑓 (𝑋) é comparada com o rótulo real
𝑓 (𝑋), e a função de erro 𝐽 (𝑓 (𝑋), 𝑓 (𝑋)) é calculada.

3) Backward: o gradiente da função de erro
∇𝐽 (𝑓 (𝑋), 𝑓 (𝑋)) é calculado e os pesos da rede
são ajustados a fim de minimizar a função de erro.

Para que um modelo aprenda, é necessário definir uma
função de erro ou custo 𝐽 (𝑓 (𝑋)), também conhecida como
função loss ou cost, que quantifica o quão bem o modelo
está se saindo dada uma saída 𝑓 (𝑋) = 𝑦 e seu vetor de
pesos 𝑤. Ou seja, a função de erro 𝐽 (𝑦, 𝑓 (𝑋)) é uma medida
de quão bem o modelo está se saindo em relação ao rótulo
real 𝑓 (𝑋) e seus pesos 𝑤, e o objetivo do treinamento é
minimizar essa função para que o modelo se aproxime o
máximo possível da função alvo 𝑓 (𝑋). Em outras palavras:

arg min𝑤𝐽 (𝑦, 𝑓 (𝑋)) (4)

Durante a etapa backward no treinamento, o cálculo
do gradiente da função de custo é um passo crucial para
ajustar os pesos da rede. O gradiente ∇𝐽 (𝑓 (𝑋), 𝑓 (𝑋))
representa a taxa de variação da função de erro em relação
aos pesos 𝑤 da rede, e é utilizado para saber a direção e a
magnitude do ajuste necessário para minimizar a função
de erro. Esse processo é realizado utilizando a técnica de
retropropagação do erro (backpropagation), que aplica a
regra da cadeia para propagar os erros da camada de saída
até as camadas iniciais, atualizado todos os pesos da rede.
Matematicamente, esse processo é descrito pela Equação 5,
onde 𝑤𝑡 é o vetor de pesos atualizado, 𝑤𝑡−1 é o vetor
de pesos anterior, 𝜂 é a taxa de aprendizado e ∇𝑤𝐽 é o
gradiente da função de erro [32], [33]:

𝑤𝑡 ← 𝑤𝑡−1 − 𝜂∇𝑤𝐽 (5)

O treinamento de modelos de aprendizado de máquina
é um processo iterativo que consiste em passar por todas
as etapas mencionadas diversas vezes e com vetores de
entrada diferentes até que o modelo atinja um desempenho
satisfatório. Esse treinamento é um processo que demanda
uma grande quantidade de dados e poder computacio-
nal [27], [28], [34]–[36], e é uma das razões que tornam o

https://github.com/huggingface/transformers

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 4

treinamento de modelos de aprendizado de máquina uma
tarefa complexa e custosa.

2.4.1 Aprendizado supervisionado: A máquina é trei-
nada a partir de um conjunto de dados rotulados, onde
cada exemplo de entrada é associado a um rótulo ou classe.

2.4.2 Aprendizado não-supervisionado: A máquina é
treinada a partir de um conjunto de dados não-rotulados,
onde um possível objetivo é encontrar padrões. Nesse caso,
a máquina pode vir a fazer suas próprias classificações e
predições.

2.4.3 Aprendizado por reforço: O agente aprende a
partir de interações com um ambiente, onde ele recebe
recompensas ou punições por suas ações, sem receber
instruções explícitas de como realizar a tarefa.

2.5 Processamento de Linguagem Natural
O Processamento de Linguagem Natural (NLP) é uma
subárea da Inteligência Artificial focada na interação entre
computadores e linguagem humana. Inclui tarefas como
tradução automática, sumarização, análise de sentimentos
e geração de textos. Modelos de linguagem (language mo-
del, LM) e grandes modelos de linguagem (large language
model, LLM) fazem parte dessa área. De modo geral, LLMs
são transformers decoder-only que geram saídas coerentes
e sensíveis ao contexto [29]. Como LLMs são capazes
de gerar textos, eles podem ser considerados modelos
generativos.

2.6 Inteligência Artificial Generativa
Inteligência Artificial Generativa, ou modelos generativos,
são modelos de aprendizado de máquina capazes de gerar
novos dados a partir de seus datasets de treinamento. Esses
modelos são amplamente utilizados em tarefas de geração
de texto, imagens e áudio. Exemplos incluem o OpenAI
GPT-3 [13] e o Meta LLaMA 3 [28], transformers generati-
vos capazes de darem respostas sensíveis ao contexto e em
linguagem humana. Para a aprendizagem, esses modelos
podem gerar respostas a perguntas de estudantes, gerar
materiais didáticos, entre outras aplicações [6], [14], [37].

2.6.1 Generative Pre-Trained Transformers (GPT):
GPTs são uma classe de LLMs muito utilizados em ta-
refas de Processamento de Linguagem Natural graças a
sua capacidade de gerar textos coerentes e sensíveis ao
contexto. Embora “GPT” seja popularmente relacionado
aos modelos ChatGPT e às famílias GPT-3 e GPT-4 da
OpenAI [13], o termo GPT se refere a uma classe de
modelos que utilizam mecanismos de atenção autoregres-
siva decoder-only para gerar textos similares à linguagem
humana.

Os GPTs, por serem pré-treinados, possuem um limite
máximo de conhecimento: o que foi apresentado durante
o treinamento. Isso significa que, caso uma pergunta seja
feita a um GPT sobre um assunto que ele não conhece,
ele não será capaz de responder corretamente, podendo
até halunicar uma resposta [38]. Para que isso não acon-
teça, são aplicadas técnicas de extensão de conhecimento,
como fine-tuning, transfer learning e Retrieval-Augmented
Generation.

2.7 Fine-tuning e transfer learning

Fine-tuning e transfer learning são técnicas de aprendi-
zado de máquina utilizadas para melhorar o desempenho
de modelos pré-treinados em tarefas e domínios novos.
Transfer learning, ou aprendizado por transferência, é um
conceito amplo que consiste em adaptar um modelo pré-
treinado e adaptá-lo a uma tarefa ou domínio novo. Fine-
tuning, ou ajuste fino, é uma técnica específica de transfer
learning que consiste em treinar novamente um modelo
pré-treinado em um conjunto de dados específico para
uma tarefa específica, ajustando seus pesos para a nova
tarefa [29], [39]. Essa técnica tem vantagens e desvan-
tagens, e é importante considerar o contexto e a tarefa
para decidir se fine-tuning é a melhor abordagem. Por
exemplo, fine-tuning pode ser eficaz quando o conjunto
de dados de treinamento é pequeno e a tarefa é similar
à original do modelo pré-treinado [39]. Entretanto, fine-
tuning pode levar a catastrophic forgetting, onde o modelo
esquece informações importantes do conjunto de dados
original [40]. Vale ressaltar que embora fine-tuning seja
uma técnica eficaz quando se tem um conjunto de dados
pequeno, “pequeno” é um termo relativo; quando se trata
de LLMs, um conjunto de dados pequeno pode conter
bilhões ou até trilhões de tokens [27], [28], [39]. Nesses
casos, pode ser interessante utilizar Retrieval-Augmented
Generation.

2.8 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) é uma técnica
que permite que LLMs referenciem conhecimentos exter-
nos ao seu treinamento durante o cálculo de um resultado.
Ela é utilizada para melhorar a qualidade e a relevância
das respostas geradas por LLMs e diminuir a quantidade
de halucinações e respostas incorretas [41]. É importante
ressaltar que RAG não é limitada a LLMs e pode ser
utilizada em outros contextos [41]; entretanto, no contexto
desse trabalho, as técnicas de RAG apresentadas serão
especificamente relacionadas a LLMs. No contexto de
aprendizagem, pode-se utilizá-la para responder perguntas
de estudantes utilizando o próprio material didático de
determinada disciplina como referência, gerando respostas
altamente personalizadas.

A Figura 1 apresenta um exemplo de aplicação do
RAG no ChatGPT dada uma query (busca, pergunta)
que obriga o modelo a buscar informações relevantes em
documentos externos pois a informação não está presente
em seu conjunto de treinamento. De modo geral, RAG é
dividido em três etapas: indexação, recuperação e gera-
ção. Detalhadamente, o RAG segue o seguinte fluxo: (1)
indexar documentos relevantes e transformá-los em vetores
de contexto; (2) recuperar os 𝑘-melhores vetores para
uma dada consulta; (3) concatenar os vetores de contexto
recuperados com a entrada e repassar ao LLM [42].
Indexação (indexing): documentos relevantes em diver-
sos formatos são “lidos”, processados e transformados em
vetores de contexto. Documentos podem ser textos, PDFs,

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 5

Figura 1. Fluxo de informações com Retrieval-Augmented Generation (RAG) e sem RAG em um LLM. Fonte: [42].

imagens, áudios, e afins. Aqui, “lidos” significa que de al-
guma forma o conteúdo do documento é convertido em um
formato que o sistema de armazenamento vetorial possa
entender e processar — por exemplo, um arquivo em PDF
é convertido em texto puro e suas imagens são extraídas e
transformadas em texto — e então é transformado em um
vetor de contexto. Os detalhes de como essa transformação
é feita dependem do tipo de documento e do sistema de
armazenamento vetorial utilizado e não fazem parte do
escopo desse trabalho.
Recuperação (retrieval): dado um vetor de consulta, o
banco de dados vetorial retorna os 𝑘-melhores vetores que
mais se assemelham ao vetor de consulta. A busca pode
ser feita utilizando funções heurísticas, buscas hierárquicas
ou outras técnicas. Cabe ao implementador decidir qual a
melhor função de busca para um determinado conjunto de
documentos e seus vetores.
Geração (generation): os vetores de contexto recupera-
dos são concatenados com a entrada e repassados ao LLM
para geração de uma resposta enriquecida com o contexto
recuperado.

Existem três tipos de RAG: naïve, advanced (avançado)
e modular. Naïve RAG é o mais simples e consiste ape-
nas em indexação, recuperação e geração. Esse tipo de
RAG pode trazer problemas na qualidade das respostas
geradas pois o modelo pode simplesmente repetir o con-
teúdo recuperado sem entender o contexto e sem adicionar
informações. Advanced RAG é uma evolução do naïve
RAG que implementa estratégias de pré-recuperação e

pós-recuperação para melhorar a qualidade dos vetores
de contexto recuperados, além de aplicar técnicas de ja-
nela deslizante para melhorar a indexação. Por fim, RAG
modular é uma abordagem mais complexa que divide o
processo de RAG em módulos independentes, onde cada
módulo é responsável por uma etapa do processo, incor-
porando diversas estratégias para melhorar o desempenho
do sistema como um todo. A Figura 2 apresenta uma
comparação entre RAG naïve e avançado, onde é possível
observar que o advanced RAG possui estratégias de pré-
recuperação e pós-recuperação para melhorar a qualidade
dos vetores de contexto recuperados. A Figura 3 apresenta
a arquitetura de um RAG modular, onde o processo de
RAG é dividido em módulos independentes, cada um
responsável por uma etapa do processo. Um RAG modular
pode incorporar RAG naïve e avançado, além de outras
estratégias para melhorar o desempenho do sistema como
um todo [41], [42].

Outra alternativa para introduzir conhecimento de um
domínio previamente desconhecido a um LLM é a utili-
zação de fine-tuning e transfer learning, onde o modelo
é treinado em um conjunto de dados específico para uma
tarefa específica [29], [39]. Entre RAG e fine-tuning, RAG é
uma técnica mais flexível e que não requer um conjunto de
dados de treinamento específico, pois o conhecimento é ex-
traído de documentos externos de maneira dinâmica [41],
enquanto fine-tuning requer um conjunto de dados de
treinamento específico para a tarefa desejada e cria um
novo modelo, o que pode ser problemático em um uso onde

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 6

Figura 2. Comparação entre naïve e advanced RAG. Fonte: [42].

Figura 3. Arquitetura de um RAG modular. Fonte: [42].

os documentos relevantes estão sempre mudando.

2.9 Prompt-based tuning em LLMs
Um estudo recente apresenta um novo paradigma para
especialização de LLMs modernos, prompt-based tuning,
ao invés de fine-tuning [43]. Em seu estudo, os autores
apresentam esse paradigma e o comparam com o anterior,
o pre-train, fine-tune, que consiste em treinar um LLM em
um grande conjunto de dados e então ajustar os pesos do
modelo para uma tarefa específica. Esse novo paradigma
consiste em escrever prompts detalhados para resolver
uma tarefa específica sem a necessidade de adaptar um
LLM para isso. Por exemplo, é possível fazer análise de
sentimentos utilizando o modelo com a seguinte prompt:
“Complete the phrase: ‘I missed the bus today, I felt so

_’ ”, onde o modelo completaria a frase com uma palavra
que expressa um sentimento, como “disappointed” [43]. Os
estudos [44], [45] apresentam abordagens similares, com
resultados alinhados ao apresentado em [43].

Dito isso, prompt-based tuning introduz a necessidade
de realizar uma engenharia de prompts, também conhecido
como prompt engineering, para obter um resultado efetivo
ao questionar o modelo.

III. Trabalhos relacionados e revisão da
literatura

Nos últimos anos, houve um avanço significativo no de-
senvolvimento e aplicação de LLMs, que evoluíram desde
modelos de linguagem estatísticos até redes neurais, cul-
minando na era atual de GPTs muito poderosos. Re-
visões abrangentes feitas em [46] e [47] fornecem uma
análise aprofundada desses desenvolvimentos, destacando
a evolução desde métodos estatísticos até redes neurais
e os avanços subsequentes com GPTs e LLMs. Nelas são
abordados aspectos do pré-treinamento, adaptação, utili-
zação e avaliação de capacidade, o que oferece uma visão
detalhada do estado-da-arte na pesquisa de LLMs. Os
autores apontam que LLMs como BERT, GPT-4, LLaMA,
ChatGPT e Claude não apenas melhoraram o desempenho
de várias tarefas de PLN, mas também abriram caminho
para novas aplicações de IA, transformando significativa-
mente o campo.

A seguir é apresentada uma revisão dos trabalhos re-
lacionados, que abordam o uso de modelos de linguagem
na aprendizagem e aprendizagem e o desenvolvimento de
metodologias para a aprendizagem de programação.

3.1 Large language models in education: A focus on the
complementary relationship between human teachers and
ChatGPT (2023)
O trabalho de [14] explora o uso de modelos de lingua-
gem na aprendizagem, com foco na relação complementar
entre professores humanos e ChatGPT na aprendizagem
de inglês para estrangeiros na Coreia do Sul. Nele, os
autores examinam como o ChatGPT pode complementar
os papéis dos professores humanos, onde identificaram que
o ChatGPT assume quatro papéis principais: interlocutor,
gerador de conteúdo, assistente de aprendizagem e avalia-
dor. Além disso, os autores discutem o papel dos professo-
res em conscientizar os estudantes sobre o uso de ferramen-
tas como o ChatGPT e como eles podem ser usados para
melhorar o aprendizado. O trabalho destaca a importância
de professores e modelos de linguagem trabalharem juntos
para melhorar o aprendizado dos estudantes, e confirma
que professores necessitam de treinamento para utilizar
ferramentas de IA em sala de aula [14], [15].

3.2 ChatGPT for good? On opportunities and challenges
of large language models for education (2023)
O trabalho de [6] investiga as oportunidades e desafios
do uso de LLMs, como ChatGPT, na aprendizagem. Os

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 7

autores discutem como esses modelos podem ser utiliza-
dos em diferentes contextos educacionais e momentos de
desenvolvimento (infância, adolescência, idade adulta), e
como eles podem ser utilizados para melhorar o engaja-
mento dos discentes e personalizar suas experiências. Além
disso, discutem a necessidade de desenvolver competências
entre professores e alunos para entender e utilizar essas
tecnologias de maneira eficaz, ressaltando a importância
do pensamento crítico e estratégias de verificação de fatos.
O estudo também aborda questões éticas, como o viés
potencial nas respostas geradas e a necessidade de super-
visão humana contínua, e oferece recomendações para uma
integração responsável e ética desses modelos no ambiente
educacional [6].

3.3 ChatGPT no auxílio da aprendizagem de programação:
um estudo de caso (2023)
O estudo de [37] investiga o uso do ChatGPT como
ferramenta auxiliar na aprendizagem de programação.
Utilizando uma metodologia quali-quantitativa, os autores
analisaram como o ChatGPT pode apoiar os alunos na
compreensão de conceitos, fornecendo exemplos de código
e feedback personalizado. Os resultados indicam que, em-
bora o ChatGPT seja uma tecnologia promissora para a
aprendizagem da programação, ele apresenta limitações,
como a precisão das respostas e a necessidade de orien-
tação contínua por parte dos professores para evitar mal-
entendidos. O estudo destaca a importância de integrar
tecnologias de IA de forma cuidadosa e monitorada para
melhorar o aprendizado e o engajamento dos alunos [37].

3.4 Ensino de Programação Orientada a Objetos Para
Iniciantes: Uma Metodologia para Programação Criativa
(2023)
O artigo de [5] explora metodologias para a aprendizagem
de programação orientada a objetos (POO) a iniciantes,
especialmente no contexto de ensino remoto durante a
pandemia. A metodologia aplicada incluiu a utilização de
salas de aula invertidas, metodologias ativas, e integra-
ção de projetos práticos, com o objetivo de desenvolver
o pensamento computacional dos alunos. Os resultados
destacaram tanto as oportunidades quanto os desafios
enfrentados, como restrições tecnológicas e a necessidade
de supervisão constante. Segundo [5], os estudantes va-
lorizaram a experiência remota, destacando a qualidade
dos conteúdos e dos trabalhos práticos. O estudo enfatiza
a importância de futuras pesquisas sobre estratégias de
aprendizagem de programação, considerando a proposta
metodológica de Programação Criativa como uma abor-
dagem eficaz para promover a aprendizagem integral e
o desenvolvimento de habilidades essenciais na área de
programação. Também é enfatizado por [5] a importância
de desenvolver o Pensamento Computacional (PC) [10] nos
alunos, e como a metodologia de Programação Criativa
pode ser uma abordagem eficaz para desenvolver essas
habilidades.

3.5 Can artificial intelligence transform higher education?
(2020)
O artigo de [48] explora o impacto potencial e real da IA
no ensino superior. Os autores examinam diversas apli-
cações de IA, como sistemas tutores inteligentes, análise
de aprendizado e personalização adaptativa. Apesar do
potencial significativo da IA para transformar práticas de
aprendizagem, os resultados empíricos atuais mostram que
a influência da IA na melhoria de resultados de aprendiza-
gem ainda é marginal. Os autores destacam a necessidade
de maior envolvimento dos educadores no desenvolvimento
de IA educacional para garantir que as aplicações futuras
abordem habilidades críticas e pensamento criativo [48].
Vale ressaltar que o trabalho de [48] foi publicado em
2020, e desde então novos avanços e pesquisas em IA
educacional, além de novos modelos mais poderosos e
coerentes, têm sido realizados, o que pode impactar as
conclusões apresentadas no artigo.

3.6 Análise dos trabalhos estudados
É possível observar que a utilização de modelos de lingua-
gem na aprendizagem é uma tendência ascendente, com
diversos estudos explorando como esses modelos podem
ser utilizados para melhorar o aprendizado dos estudantes.
Os trabalhos de [6], [14], [37] destacam a importância
de professores e IA trabalharem juntos para melhorar
o aprendizado dos estudantes, e ressaltam a necessidade
de treinamento e supervisão contínua para garantir o
uso ético e responsável dessas tecnologias. Já o trabalho
de [5] explora metodologias para a aprendizagem de pro-
gramação orientada a objetos a iniciantes, destacando a
importância do pensamento computacional dos alunos e
como a aprendizagem de programação não é apenas sobre
a linguagem de programação, mas sobre o desenvolvimento
de outras habilidades essenciais na área de computação.
Por fim, o trabalho de [48] examina o impacto potencial e
real da IA no ensino superior, destacando o potencial signi-
ficativo da IA para transformar práticas de aprendizagem.
Esses trabalhos contribuem para a compreensão de como
a IA pode ser utilizada para melhorar o aprendizado dos
estudantes e como professores e IA podem trabalhar juntos
para alcançar esse objetivo. Em vista disso, este trabalho
busca contribuir para essa discussão, explorando como um
sistema de IA pode ser utilizado para auxiliar discentes
na aprendizagem de programação, fornecendo respostas
personalizadas e orientações para suas dúvidas, além de
agregar valor à instituição que o adotar.

3.7 Conexões com o trabalho desenvolvido
A integração da IA no aprendizado e processos de apren-
dizagem tem sido amplamente estudada, com diversas
abordagens demonstrando os potenciais benefícios e de-
safios do uso da IA para melhorar as experiências de
aprendizado. Por exemplo, [14] explora a relação com-
plementar entre professores humanos e o ChatGPT na
aprendizagem de inglês, enfatizando a necessidade de os
professores incorporarem efetivamente ferramentas de IA

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 8

em suas estratégias de aprendizagem [14]. Este estudo
fornece uma base para entender como a IA pode apoiar os
educadores, um conceito examinado por este trabalho ao
aplicar IA Generativa na aprendizagem de programação.

De modo similar, [6] discute as oportunidades e desa-
fios do uso de grandes modelos de linguagem, como o
ChatGPT, em vários contextos do aprendizado, desta-
cando a importância das competências de professores e
alunos na utilização dessas tecnologias [6]. Este estudo
aborda um assunto similar, focado especificamente no
domínio da aprendizagem de programação e propondo im-
plementações práticas para apoiar tanto os alunos quanto
as instituições de ensino durante sua trajetória acadêmica.

A pesquisa de [37] sobre o uso do ChatGPT para
auxiliar a aprendizagem de programação destacou tanto
o potencial quanto as limitações desse modelo em fornecer
feedback personalizado e exemplos de código [37]. Isso se
alinha com o objetivo de utilizar um LLM para oferecer
suporte personalizado aos alunos, abordando limitações
semelhantes por meio de capacidades avançadas do modelo
e implantação estruturada em ambientes educacionais.

As taxas de reprovação em cursos introdutórios de pro-
gramação foram revisitadas por [11], atribuindo a alta eva-
são à complexidade dos conceitos e à falta de suporte [11].
Abordando essa lacuna, este estudo visa reduzir as taxas
de evasão ao fornecer assistência em tempo real gerada
por IA para ajudar os alunos a superar obstáculos de
aprendizagem.

No entanto, nenhum desses estudos integra diretamente
o material didático do curso, como é feito nesse traba-
lho. Este estudo se destaca por utilizar a IA Generativa
para fornecer respostas e orientações baseadas no mate-
rial específico das disciplinas, criando um ambiente de
aprendizagem altamente personalizado e contextualizado.
Os trabalhos apresentados anteriormente foram escolhidos
por tangenciarem ao menos um dos temas abordados nesse
trabalho, como a importância da integração de IA no
aprendizado, a necessidade de treinamento e supervisão
contínua para garantir o uso ético e responsável dessas
tecnologias, e a importância do pensamento computacional
e do desenvolvimento de habilidades essenciais na área de
computação.

Ao se basear nesses estudos fundamentais, essa pesquisa
visa contribuir para a área de IA na aprendizagem, fo-
cando em sua aplicação em cursos de programação. O
sistema implementado e sua integração nos frameworks
educacionais busca não apenas validar a eficácia da IA em
melhorar os resultados de aprendizagem, mas também ofe-
recer uma solução escalável para os desafios generalizados
na aprendizagem da Ciência da Computação.

IV. Trabalho desenvolvido
Neste trabalho é apresentado um sistema de apoio ao
aprendizado de programação utilizando modelos de lin-
guagem de grande escala capazes de responder perguntas
dos estudantes e fornecerem orientações personalizadas
baseando-se em materiais didáticos de determinada dis-
ciplina. O sistema desenvolvido fora arquitetado para ser

modificável e expansível, permitindo a adição de novas
funcionalidades, outros modelos, outras interfaces, outros
sistemas de RAG, e até mesmo a integração com outras
ferramentas de aprendizagem. Dito isso, o escopo do tra-
balho se limita às ferramentas Ollama para execução do
modelo, OpenWebUI como interface web, e Pipelines com
LlamaIndex como sistema de RAG. O sistema possui os
seguintes requisitos básicos:
• Responder perguntas utilizando informações externas

à seu treinamento através de extensão de conheci-
mento.

• Evitar dar respostas diretas, tentando aplicar técnicas
de aprendizagem guiada.

• Dar respostas coesas e corretas seguindo o material
didático.

• Não diminuir a capacidade de inferência do modelo-
base.

• Ser de fácil uso e acesso; acesso se dá, por exemplo,
por uma interface web.

• Agregar valor tanto ao aprendizado do discente
quanto ao trabalho do docente.

As seções seguintes contextualizam o problema abor-
dado e detalham a implementação do sistema.

4.1 Pensamento computacional e evasão em cursos de
computação
A evasão nos cursos de computação é um problema recor-
rente e preocupante, tanto no Brasil quanto no exterior [3],
[4], [8], [9], [11]. Diversos fatores contribuem para esse
fenômeno, entre eles a dificuldade de aprendizagem dos
conceitos fundamentais de programação e lógica [5], [9].
Essas dificuldades são amplamente atribuídas à falta de
familiaridade dos alunos com o pensamento computacio-
nal [10], uma habilidade essencial que vai além do simples
domínio de uma linguagem de programação [12], [17], [18],
[49].

O pensamento computacional envolve a capacidade de
resolver problemas de maneira lógica e estruturada, ha-
bilidades cruciais para o sucesso em qualquer área da
computação e outras áreas do conhecimento [10]. No en-
tanto, muitos alunos encontram barreiras significativas ao
tentar desenvolver essas habilidades, o que pode levar à
frustração e, eventualmente, à desistência do curso ou até
mesmo da área. Os estudos de [3], [8], [11] apontam que a
evasão em cursos de computação é um problema complexo,
influenciado por diversos fatores, sendo apenas um deles
a dificuldade de aprendizagem desses conceitos. Dito isso,
uma ferramenta que auxilie o professor e o discente na
aprendizagem desses conceitos é de grande valia.

4.2 IA no apoio ao aprendizado
A aplicação da IA no apoio ao aprendizado não é uma
novidade, mas suas possibilidades estão se expandindo
rapidamente [48]. Embora uma revisão sistemática de
pesquisas sobre aplicações de IA no ensino superior sugira
que a integração efetiva de IA pode melhorar os resultados

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 9

de aprendizagem ao fornecer suporte personalizado e adap-
tativo aos estudantes [50], [48] apresenta um cenário mais
complexo, onde seus resultados mostram que a influência
da IA obtém melhorias marginais. Reforça-se que o papel
dos educadores é crucial para a implementação bem-
sucedida dessas tecnologias [6], [14], [17].

O pensamento computacional é fundamental para o
sucesso dos alunos não só em cursos de computação mas
em diversas outras áreas que possivelmente nem existam
ainda [1], [10]. Diversas estratégias podem ser empregadas
para ensinar essas habilidades em diferentes contextos e
ambientes de aprendizagem. Se cita:
Integração de conceitos computacionais no currí-
culo: Estudos mostram que incorporar conceitos com-
putacionais no currículo do ensino fundamental e médio
pode ajudar a desenvolver habilidades de pensamento
computacional em estudantes de todas as idades [12], [17],
[18], [49].
Aprendizagem baseada em projetos: Projetos práti-
cos que envolvem a criação de programas ou a resolução
de problemas complexos incentivam os alunos a aplicar
o pensamento computacional de forma criativa e prática.
Este método não apenas reforça os conceitos aprendidos,
mas também promove habilidades de colaboração e comu-
nicação [1], [5], [17], [18].
Feedback e avaliação contínua: O uso de sistemas
de avaliação contínua e feedback imediato pode ajudar
os alunos a identificar suas dificuldades e melhorar suas
habilidades de pensamento computacional ao longo do
curso. A integração com sistemas de IA pode fornecer
suporte personalizado e orientações específicas para cada
aluno dadas suas necessidades e dificuldades [6], [14], [37].
Nesse sentido também é possível citar a importância de
ferramentas de apoio à aprendizagem, como o sistema
desenvolvido neste trabalho, que podem fornecer dados
valiosos para análise de aprendizado (learning analytics) e
ajudar a identificar padrões e tendências no desempenho
dos alunos [14], [48].
Treinamento de educadores: A eficácia da aprendi-
zagem de pensamento computacional também depende
da preparação dos educadores. Oferecer treinamento ade-
quado para professores é crucial para que eles possam inte-
grar essas estratégias em suas aulas de maneira eficaz [6],
[14].

Empregar IA na aprendizagem também se faz atraente
pois pode fornecer suporte personalizado e adaptativo aos
estudantes, ajudando a superar obstáculos de aprendiza-
gem de maneira individual e sem julgamentos [7], [50].

4.3 Escolha do modelo de IA
Existem muitos LLMs disponíveis, cada um com suas
características e limitações [47], [51]. Para manter o estudo
alinhado com o mercado e não correr tanto risco de
expor os usuários a modelos inseguros, foram considerados
apenas aqueles vindos de empresas de renome (Google,
Microsoft, Meta, etc.) com ampla documentação e abor-
dagens éticas e de segurança bem definidas. Desses, foram

descartados modelos de código-fechado como toda a famí-
lia de modelos da OpenAI: GPT-3 [13], GPT-4, ChatGPT,
entre outros. Entre os modelos de open source (código
aberto), a família de modelos LLaMA se destacou por
sua performance excelente em diversos benchmarks (testes
padronizados) e se tornou muito popular na indústria e
pesquisa [27], [34], [47]. No início dessa pesquisa, o modelo
LLaMA 3 ainda não havia sido lançado; mesmo assim, a
família LLaMA já havia sido escolhida como a melhor op-
ção para o desenvolvimento do sistema desenvolvido [27],
[34], [47]. Com o lançamento do LLaMA 3, a escolha foi
confirmada, e essa família foi escolhida [28], [52]. Outros
motivos que reforçam nossa escolha dessa família são sua
documentação extensa e, de muita importância, a ênfase
que a equipe de desenvolvimento dá à ética e segurança
em seus modelos [28], [52], [53].

Não se levou em consideração apenas os resultados das
benchmarks auto-reportados pelas equipes de desenvolvi-
mento de cada modelo. Como já haviam sido descartados
modelos de código fechado, a utilização dos resultados de
benchmarks de terceiros se tornou possível, especialmente
os realizados por [47], o Open LLM Leaderboard [54]
da HuggingFace e o AlpacaEval 2.0 [55]. Também foram
removidas as versões quantizadas, modificadas ou com
fine-tuning da busca, mas foram mantidos aqueles modelos
modificados (fine-tuned) para tarefas específicas como chat
e código.

4.3.1 Open LLM Leaderboard: O Open LLM Leader-
board é uma plataforma que automaticamente avalia
modelos abertos utilizando técnicas conhecidas de ava-
liação como ARC [56], HellaSwag [57], MMLU [58] e
WINOGRANDE [59]. Também utilizam métricas para
avaliar conhecimentos em áreas específicas como matemá-
tica (GSM8K [60]) e falácias (TruthfulQA [61]). Como o
Open LLM Leaderboard avalia muitos modelos diferen-
tes, foi utilizado um filtro para remover aqueles que são
previamente treinados em tarefas específicas (fine-tuned
on domain-specific datasets, em inglês) e mantidos apenas
modelos pré-treinados para que a comparação fosse justa
e os resultados refletissem a capacidade dos modelos de
aprender e generalizar conhecimento [54]. No Open LLM
Leaderboard, o LLaMA 3 70B se coloca em primeiro lugar
na média, com um escore de 73.96. Seguido em perto por
Qwen 72B com um escore médio de 73.6 e uma versão
modificada do Phi 3 com um escore de 73.57. Outros
modelos considerados foram o Deepseek 67B (escore de
69.38) e o Mixtral 8x7B (escore de 68.42).

4.3.2 AlpacaEval 2.0: O AlpacaEval 2.0 é uma plata-
forma de avaliação de modelos de linguagem automática
que utiliza um conjunto de avaliação própio e aberto que
avalia LLMs entre si, comparando suas respostas com as
respotas geradas pelo OpenAI GPT-4 Preview; o escore é
chamado de win rate, ou taxa de vitória [55]. Quando com-
parado com o Open LLM Leaderboard, o AlpacaEval 2.0 é
mais focado em avaliar a capacidade dos modelos entre si,
enquanto o Open LLM Leaderboard é mais abrangente e
avalia uma variedade de tarefas [54], [55]. No AlpacaEval
2.0, o LLaMA 3 70B se coloca décimo lugar com uma taxa

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 10

de vitórias de 34.4%. Os modelos que se colocam acima do
LLaMA sâo o OpenAI GPT-4 e suas variações, 01.AI Yi
Large, Anthropic Claude 3 Opus e Qwen 1.5 72B. Como
um dos requisitos é utilizar modelos de código aberto,
foram descartadas as famílias OpenAI GPT-4 e Anthropic
Claude 3. Entre os modelos restantes, o LLaMA 3 70B se
destaca por possuir ampla documentação, fundamentação
científica e ênfase em segurança e ética [28], [52].

4.4 LLaMA 3
A família de modelos escolhida foi a Meta LLaMA 3, suces-
sora da LLaMA 2 e Codellama. Dentro da família LLaMA
3 existem dois modelos-base ou fundamentais: llama3:8b
e llama3:70b, que se diferenciam pela quantidade de pa-
râmetros e, consequentemente, pela capacidade de proces-
samento e requisitos computacionais [28], [52]. O modelo
llama3:8b possui oito bilhões de parâmetros e é menor e
mais rápido, enquanto o llama3:70b é maior, com setenta
bilhões de parâmetros, e mais poderoso, mas também
mais exigente em termos de recursos computacionais [28].
Existe também o llama3:400b, com quatrocentos bilhões
de parâmetros e quase seis vezes maior que o llama3:70b,
que foi apenas anunciado e ainda não está disponível
para uso [62]. As variações de número de parâmetros
refletem diretamente na capacidade de processamento e
na qualidade das respostas geradas pelo modelo, assim
como em seus requisitos computacionais. Para o uso em
tarefas específicas, como chat e código, são utilizadas as
versões refinadas desses modelos, que são fine-tuned para
essas tarefas [28], [52]. A Figura 4 mostra uma comparação
reportada pela Meta AI entre o LLaMA 3 70B Instruct e
outros LLMs.

Para chats e conversas há a variação instruct, como o
llama3:70b-instruct. Diferente do LLaMA 2, o LLaMA
3 não possui uma variação específica para código, mas
é possível utilizar o llama3:70b-instruct para essa ta-
refa [27], [28]. Para código, não há um refinamento espe-
cífico do LLaMA 3. No entanto, existe o Codellama. O
Codellama é a versão fine-tuned do LLaMA 2 para tarefas
de código [63], e foi testado neste trabalho como uma
alternativa aos modelos de conversação.

O LLaMA 3 possui conteúdos oficiais disponíveis em [28]
e [52] que contém informações importantes sobre o modelo,
como sua arquitetura e funcionamento. Similar ao LLaMA
2, o LLaMA 3 utiliza grouped query attention (GQA) como
seu mecanismo de atenção. No entanto, o LLaMA 3 aplica
a GQA em ambos os tamanhos de modelo, enquanto o
LLaMA 2 o aplica apenas nos modelos com 34 bilhões de
parâmetros ou mais [27], [28]. O tokenizer do LLaMA 2
é o mesmo do LLaMA 1, com um vocabulário de 32 mil
tokens [27]. Já o tokenizer do LLaMA 3 possui 128 mil
tokens, o que leva a uma melhoria substancial na perfor-
mance de codificação (encoding) [28]. Em sua arquitetura
baixo nível, o LLaMA utiliza a função de ativação SwiGLU
(Equação 3) e normaliza as saídas da rede antes de utilizar
a função softmax no resultado.

O dataset de treinamento do LLaMA 3 é sete vezes
maior que o do LLaMA 2, com mais de 15 trilhões de

tokens [28] e incluindo quatro vezes mais tokens de código.
Desses 15 trilhões de tokens, em torno de 5% são de
línguas diferentes do inglês, o que torna o LLaMA 3 um
modelo multilíngue [28]. Ou seja, mesmo que o modelo
possa ser considerado multilíngue, não se espera que sua
performance em outras línguas seja tão boa quanto em
inglês. Mesmo assim, nos testes conduzidos neste estudo,
o LLaMA 3 se saiu bem em responder perguntas em
português.

LLMs possuem um número máximo de tokens que são
considerados por vez durante a inferência. Isso se chama
tamanho ou janela de contexto, e varia de modelo a mo-
delo. O tamanho dessa janela determina quanto do texto
anterior o modelo irá “lembrar”, ou levar em consideração,
ao gerar uma resposta coerente [29], [39], [64].

Ambos modelos (8B e 70B) possuem um tamanho má-
ximo de contexto de 8 mil tokens, mas é possível aumentar
esse tamanho através de técnicas como LoRA e QLoRA,
cujos conceitos não fazem parte do escopo deste trabalho.
Utilizando QLoRA, [65] reporta que foi possível aumentar
o tamanho do contexto do LLaMA 3 8B Instruct para
80 mil tokens com pouca perda de acurácia, e afirma que
talvez seja possível aumentar o contexto ainda mais.

Segundo [28], o treinamento dos modelos LLaMA 3 8B
e 70B durou 1.3 milhão e 6.4 milhões de horas respec-
tivamente em dois clusters com 24 mil GPUs NVIDIA
H100 com 80 GB de VRAM cada. Cada uma dessas GPUs
é precificada em torno de 30 mil dólares americanos, e
cada cluster possui 24.576 GPUs, o que resulta em um
custo apenas em GPUs, sem contar outros requisitos de
infraestrutura, de quase um bilhão e meio de dólares
americanos [66]. Ou seja, o treinamento desses modelos é
extremamente caro, exige uma infraestrutura computacio-
nal de ponta e recai sobre grandes empresas e instituições
de pesquisa.

4.4.1 Segurança: Sobre segurança e ética, [53] apresenta
o Llama Guard, um LLM “guardião” capaz de detectar
e corrigir viéses, discurso de ódio, desinformação, entre
outros. Em [28] é sugerido que o LLaMA 3 seja utilizado
em conjunto com o Llama Guard para garantir a segurança
e ética do sistema que será desenvolvido, onde o Llama
Guard atua como um filtro de segurança tanto na entrada
quanto na saída do sistema. A segurança de LLMs é um
fator importantíssimo a ser considerado, especialmente em
ambientes de aprendizagem, onde a proteção dos dados dos
estudantes e a garantia de respostas seguras e confiáveis
são essenciais [28], [52], [53].

4.5 Execução local de um LLM
Existem diversas plataformas e ferramentas que permitem
a execução de LLMs localmente. Para isso, foi escolhido
o Ollama5, uma plataforma de código aberto que permite
a execução de modelos de IA, principalmente LLMs, em
hardware local. Outra opção é o vLLM6 [67], ferramenta
de código aberto que se mostra mais performática que o

5Disponível em: https://ollama.com
6Disponível em: https://github.com/vllm-project/vllm

https://ollama.com
https://github.com/vllm-project/vllm

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 11

Figura 4. Comparação reportada pela Meta AI entre o LLaMA 3 70B Instruct e outros LLMs. Fonte: [28].

Ollama, mas com um setup um pouco mais envolvente [67].
A vantagem do vLLM é que ele é capaz de paralelizar
tarefas de inferência, enquanto o Ollama não7. Uma outra
ferramenta considerada foi o llama.cpp [69], ferramenta
de inferência em C/C++, mas foi descartada pois o
Ollama a utiliza como base. O sistema implementado é
relativamente indiferente ao executor do modelo, sendo
necessárias apenas algumas mudanças na configuração e
fora do escopo do estudo.

4.5.1 Nota importante sobre o execução remota e dados
sigilosos: Em casos de implantação deste sistema em
ambientes de execução remotos, faz-se necessário adotar
uma atitude cuidadosa quanto à segurança dos dados que
estão sendo transmitidos entre componentes do sistema.
Se optar-se por utilizar uma plataforma de hospedagem ou
inferência as a service, os dados em trânsito ficam expostos
— apesar da criptografia existente e outros mecanismos de
segurança — ao mundo externo, trazendo riscos à organi-
zação. Outro ponto importante é a coleta de dados dos
usuários: mesmo se a plataforma escolhida não estiver no
Brasil, a Lei Geral de Proteção de Dados pode se aplicar,
abrindo caminho para possíveis ações judiciais [70].

7Os desenvolvedores do Ollama estão trabalhando para adicionar
suporte a paralelismo, mas não foi lançado até o momento [68].

4.6 Métricas de avaliação

A avaliação do sistema se dá pela análise da qualidade
das respostas do modelo a perguntas predeterminadas. São
utilizadas técnicas de avaliação automática, como a pre-
sença de palavras-chave esperadas na resposta, e técnicas
de análise humana (human feedback). A lista de perguntas
feitas ao sistema foi escolhida de forma a abranger uma
variedade de tópicos e conceitos de programação, desde
conceitos básicos como laços e condicionais até conceitos
mais avançados como classes e métodos, além de assuntos
externos aos materiais da disciplina, como redes neurais.
O conjunto de perguntas escolhido é apresentado a seguir:

1) O que é um laço?
2) Não entendi algoritmos. Poderia me explicar?
3) Me dê um exemplo de do-while.
4) Meu código não está funcionando.
5) O que são métodos? Como os utilizo?
6) Qual é a vantagem de usar métodos em programa-

ção?
7) O que é um erro de compilação?
8) Por que meu programa está travando?
9) Por que meu programa dá o resultado errado mesmo

compilando?
10) Para que serve a classe Scanner?
11) Como eu imprimo na tela?
12) O que são ifs aninhados?

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 12

13) Como eu escrevo um algoritmo para resolver um
problema?

14) O que é uma classe?
15) Como eu crio e uso classes no meu programa?
16) O que é um array?
17) O que é uma rede neural?
Utilizando um script, o modelo foi questionado cem

vezes com cada pergunta e suas respostas foram salvas.
Feito isso, as respostas foram avaliadas tanto manualmente
quanto automaticamente, por meio de outra instância de
LLM, para verificar a qualidade das respostas geradas.

Também foram utilizadas as ferramentas de avaliação
disponibilizadas pelo LlamaIndex. Com elas, foi possível
gerar um dataset de perguntas a partir dos documentos
carregados e avaliar as respostas de maneira automática.
As perguntas geradas foram utilizadas para avaliar a rele-
vância dos contextos utilizados e a fidelidade das respostas
do modelo a essas perguntas.

Sempre que alguma modificação era feita no sistema, o
script era executado novamente para avaliar a qualidade
das respostas geradas. Isso permitiu aprimorar o sistema
de forma iterativa, uma abordagem comum e eficaz para
projetos de IA.

A Figura 5 apresenta um excerto dos resultados obtidos
por meio da avaliação automática. O LLM avaliador —
LLaMA 3 70B Instruct “puro” — foi instruído a dar uma
nota de 0 a 10 para cada resposta, sendo 0 a pior nota
e 10 a melhor. É possível concluir que o modelo se saiu
bem em responder perguntas utilizando o contexto, com
notas acima de 7 em quase todas as perguntas. Também
é possível notar que o avaliador deu notas mais baixas
para perguntas onde o modelo solicitou mais informações
ou não respondeu diretamente à pergunta, como “Meu
código não está funcionando”, onde o modelo muitas vezes
respondeu com “Desculpe” e similares e pediu clarifica-
ções. Ou seja, a avaliação automática é uma ferramenta
útil, mas é necessário um olhar humano para avaliar as
avaliações.

4.6.1 Protocolo de teste manual: O protocolo para tes-
tes conduzidos manualmente foi o seguinte: a partir da
interface web, o modelo era questionado com uma das
perguntas acima e a resposta era avaliada em relação à
sua coesão, acurácia e relevância. A coesão da resposta se
refere à sua estrutura e organização, enquanto a acurácia
se refere à correção dos fatos apresentados. A relevância
da resposta se refere à sua relação com a pergunta feita.

4.7 Programação do sistema
Toda a codificação do projeto está feita em Python8, uma
linguagem de programação de alto nível muito utilizada
para projetos que envolvam inteligência artifical e apren-
dizado de máquina. As bibliotecas relevantes utilizadas no
projeto são o LlamaIndex e HuggingFace Transformers.
Bibliotecas como PyTorch, NumPy e afins são instaladas
como dependências dessas bibliotecas principais. Como se

8Disponível em: https://www.python.org

possui uma GPU da NVIDIA, a “biblioteca” CUDA foi
instalada — assim como o PyTorch com suporte a CUDA
— para que fosse possível utilizar a GPU nas tarefas de
treinamento e inferência. Localmente, o Mamba (similar
ao Conda) foi utlizado para gestão das dependências.

A biblioteca LlamaIndex é utilizada para implementar
o RAG.

4.8 Técnicas de extensão de conhecimento
Estender o conhecimento do modelo escolhido com os
materiais didáticos disponíveis apresentou um desafio inte-
ressante: exstem diversas maneiras de se fazer isso, e cada
uma delas tem suas vantagens e desvantagens, o que fez
esse processo ser extremamente iterativo e experimental.
Inicialmente, foi feita uma análise dos materiais didáticos
que seriam utilizados para extensão do conhecimento do
modelo. Concluída essa análise, foram levantadas as técni-
cas compatíveis com nosso dataset e que trariam bons re-
sultados sem a necessidade de muito poder computacional
ou pré-tratamentos extensos (como rotulação manual, por
exemplo). Entre as técnicas no espaço de busca, foi esco-
lhido o RAG como técnica de extensão do conhecimento do
modelo. Também foi considerado utilizar fine-tuning, onde
a documentação do LLaMA 3 indica parameter-efficient
fine-tuning (PEFT) com LoRA ou QLoRA antes de um
processo que modifique todos os parâmetros para não ser
necessário um poderil de recursos elevado.

Como mencionado anteriormente, o fine-tuning envole o
re-treinamento do modelo que está sendo refinado. Além
disso, sempre que forem adicionados novos conteúdos ao
domínio — por exemplo, um novo material de aula —,
é necessário o re-treinamento. No entando, o fine-tuning
entrega um modelo pronto que não requer outras ferramen-
tas para funcionar corretamente. Mesmo assim, o RAG
se mostra como a alternativa mais atraente por diversos
motivos; entre eles:

1) Nâo é necessário treinar um modelo massivo nova-
mente, poupando recursos financeiros e computacio-
nais.

2) Permite a adaptação rápida a novos materiais didá-
ticos.

3) É de relativamente simples implementação e manu-
tenção.

Em outras palavras, o fine-tuning congela o conhe-
cimento de um modelo naquilo que está codificado na
representação numérica de seus pesos. Para adicionar co-
nhecimento, é necessário ou treinar o modelo novamente
ou utilizar RAG. A desvantagem do RAG é que se faz
necessária uma ferramenta auxiliar que faça essa extensão
de conhecimento, adicionando um ponto a mais de falha
na infraestrutura.

4.8.1 Sobre fine-tuning: O fine-tuning não foi escolhido
mas também não foi descartado, pois ele é útil quando
somente com RAG e prompt engineering o modelo não
performa como desejado, seja por questões comportamen-
tais, de conhecimento, segurança, entre outros. A Meta
AI disponibiliza um script oficial em seu repositório no

https://www.python.org

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 13

0 2 4 6 8 10
Escore médio

O que são algoritmos?

O que são ifs aninhados?

O que é uma classe?

O que é um laço?

Qual é a vantagem de usar métodos
em programação?

O que é um array?

Como eu crio e uso classes no meu
programa?

O que é um erro de compilação?

O que são métodos? Como os utilizo?

Para que serve a classe Scanner?

Como eu escrevo um algoritmo para
resolver um problema?

Como eu imprimo na tela?

O que é uma rede neural?

Por que meu programa dá o resultado
errado mesmo compilando?

Por que meu programa está travando?

Meu código não está funcionando.

Avaliação automática de respostas de perguntas sobre programação

Mínimo
Máximo
Desvio padrão
Intervalo de confiança (95%)

1Figura 5. Excerto dos resultados obtidos por meio de avaliação automática das perguntas feitas ao sistema. Fonte: autor.

GitHub para essa finalidade, assim como alguns datasets
de exemplo [52]. Ao ler a documentação, se cita que
“[Utilizar] fine-tuning com PEFT LoRA [. . .] usando o
dataset OpenAssistant [e um tamanho de batch de 4] [. . .]
demora em torno de dezesseis horas em uma única GPU
e utiliza menos de 10 GB de memória de GPU; mudar o
tamanho de batch para 8/16/32 utiliza 11/16/25 10 GB
de memória de GPU”. Com PEFT QLoRA demora em
torno de seis horas e meia em uma única GPU e 11 GB
de memória de GPU. A documentação cita também o
projeto Axolotl [71], uma ferramenta que visa facilitar
o processo de fine-tuning que suporta diversos tipos de
datasets diferentes. No término do processo de fine-tuning
ou de transfer learning é retornado um modelo com sua
arquitetura e pesos ajustados. Esses pesos são o que fazem
o modelo; sem eles, não há “modelo”. São esses pesos que
são distribuídos, assim como outras informações (exemplo:
arquitetura), em plataformas como a HuggingFace. Apesar

de não ter sido escolhido nesse momento, aplicar fine-
tuning pode ser uma boa opção para melhorias desse
projeto no futuro.

4.9 Sobre RAG
Para implementação do RAG foi utilizada a biblioteca
LlamaIndex9, uma biblioteca de código aberto e de ampla
utilização no mercado [72]. Existem outras bibliotecas de
RAG como a LangChain10 [73], mas o LlamaIndex foi
escolhida por ter uma documentação aparentemente mais
clara e coesa. Tanto a LangChain quanto o LlamaIndex
são bibliotecas conhecidas e utilizadas no mercado, então a
escolha entre uma ou outra se deu por preferência pessoal.

Dentro da área de RAG existem diversas estratégias
de busca e, similar ao restante do trabalho, escolher
qual estratégia utilizar se deu por um processo iterativo.

9Disponível em: https://www.llamaindex.ai
10Disponível em: https://www.langchain.com

https://www.llamaindex.ai
https://www.langchain.com

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 14

Antes de determinar qual estratégia adotar, foi necessário
escolher um modelo de embedding que lidasse bem com
dados textuais em português, inglês e código.

Brevemente e em altíssimo nível, um embedding é uma
representação de um texto (nesse contexto) em um vetor
numérico. Um modelo de embedding é aquele que recebe
texto como entrada e retorna um vetor de números que
tentam capturar dados semânticos da entrada, permitindo
assim uma busca semântica nos dados codificados. Por
exemplo, se um usuário fizer uma pergunta sobre laços,
o vetor de embedding resultante da pergunta será muito
próximo do vetor de embedding de textos que mencionam
laços.

4.10 Escolha do modelo de embedding
Foram considerados os modelos de embedding mais conhe-
cidos pela comunidade atualmente. São eles:
• nomic-ai/nomic-embed-text-v1.5 [74]
• BAAI/bge-m3 [75]
• mixedbread-ai/mxbai-embed-large-v1 [76]
• intfloat/multilingual-e5-large [77]
• intfloat/e5-mistral-7b-instruct [78]
Em seus testes, [79] compara esses e outros modelos.

Seus resultados demonstraram que o BAAI/bge-m3 parece
ser a melhor opção. No entanto, [79] não testou corpus em
português, então podem haver divergências da realidade.
Foi escolhido o modelo BAAI/bge-m3 para nosso caso de
uso.

4.11 Preparação dos dados
Foram coletados os materiais didáticos da disciplina de
Fundamentos da Programação, todos slides em formato
PDF, para adicionar ao RAG. Entretanto, alguns dos
slides continham texto em formato de imagem, então foi
necessário utilizar uma ferramenta de OCR nesses arquivos
específicos. No total, são menos de 100 MB de dados crus.

O LlamaIndex disponibiliza diversas formas de carregar
documentos para serem adicionados ao banco vetorial.
Entre elas, está sendo utilizada uma API da LlamaCloud11

chamada LlamaParse, dos mesmos mantenedores do Lla-
maIndex. Se optou pela LlamaParse pois ela possui um
plano grátis, limitado a um número de páginas por dia
com suporte a OCR e a diversas línguas, e também pode
retornar os PDFs em formato Markdown. Poderiam ter
sido utilizadas ferramentas locais e de código aberto para
atingir resultados semelhantes, mas optou-se por utilizar
essa ferramenta, que apresentou excelentes resultados

O retorno em Markdown pode não parecer muito rele-
vante a primeira vista, mas ele permite que seja feita uma
revisão manual desses documentos antes de seguir para a
próxima fase do processo, o armazenamento em um banco
vetorial. Essa revisão manual se fez necessária; os arquivos
retornados foram verificados e modificados sempre que
necessário (como erros de ortografia, formatação, ou até
mesmo halucinações). Por exemplo, a Figura 6 foi um

11Disponível em: https://cloud.llamaindex.ai

resultado obtido ao usar a LlamaParse em um dos PDFs,
e a Figura 7 é o que se esperava desse mesmo arquivo. Em
contrapartida, a Figura 8 apresenta um exemplo de um
resultado inalterado vindo diretamente dessa ferramenta.
O LlamaParse que adicionou o prefixo “Erro de” nos itens
da lista nesse caso, pois fora instruído que eram slides de
conteúdo de faculdade. Isso pode indicar que o conteúdo
dos arquivos está sendo analisado por um LLM e não uma
ferramenta de OCR.

1 # Instruções de Saída
2

3 22
4 #
5

6 GMLmzd2
7

8 6C)- Criação das variáveis
9

10 OLw-#y
11

12 2 mc?
13

14 2Jx

Figura 6. Resultado errôneo vindo do LlamaParse.

1 # Instruções de saída
2

3 Como o usuário deve informar a saída (tela)
4

5 System.out.print("Informe o nome:");
6 System.out.print(variavel);
7

8 # Criação das variáveis e constantes
9

10 Constantes são valores que não se alteram:
11

12 - Por convenção, seus identificadores são
escritos em caixa alta.↩→

13 - A declaração de constantes exige a palavra
reservada final.↩→

14

15 final tipo identificadorConstante = valor;
16 Exemplo: final double TAXA = 25;

Figura 7. Resultado do LlamaParse esperado do mesmo arquivo
utilizado na Figura 6.

Feita essa limpeza e revisão, se fez a inclusão desses
documentos no banco de dados vetorial do LlamaIndex.
Mais uma vez, existem diversas formas de realizar essa
importação. Aqui são utilizadas diversas estratégias, ou
transformações, de importação de dados: quebra do texto
em chunks (pedaços) menores, divisão hierárquica dos
nodos, e afins. A Figura 9 apresenta um exemplo de
importação desses arquivos em Markdown, assim como
suas transformações.

https://cloud.llamaindex.ai

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 15

1 Tipos de Erros
2

3 - Erro de Sintaxe: ocorre quando há um erro
na estrutura do código, como falta de
ponto e vírgula.

↩→

↩→

4 - Erro de Lógica: ocorre quando o código
está correto, mas a lógica implementada
não produz o resultado esperado.

↩→

↩→

5 - Erro de Tempo de Execução: ocorre durante
a execução do programa, como divisão por
zero.

↩→

↩→

6 - Erro de Semântica: ocorre quando o código
está correto, mas não faz o que era
esperado

↩→

↩→

Figura 8. Resultado do LlamaParse sem alterações.

1 from llama_index.core import (
2 VectorStoreIndex,
3 SimpleDirectoryReader
4)
5 from llama_index.core.node_parser import (
6 HierarchicalNodeParser,
7 MarkdownNodeParser
8)
9

10 reader = SimpleDirectoryReader('data/md/')
11 index = VectorStoreIndex.from_documents(
12 reader.load_data(),
13 transformations=[
14 MarkdownNodeParser(),
15 HierarchicalNodeParser.from_defaults(
16 chunk_sizes=[2048, 512, 128],
17 chunk_overlap=30
18),
19],
20)

Figura 9. Leitura dos arquivos em Markdown para serem adicionados
ao banco vetorial (index) com transformações de quebra hierárquica.

Analisando a Figura 9, se vê que está sendo criado um
VectorStoreIndex da biblioteca LlamaIndex chamado
index, e é a partir dele que será criado o motor de chat ou
conversação utilizado pela Pipeline nas próximas seções.

4.12 LlamaIndex e adicionais
A implementação utilizando somente LlamaIndex, por si
só, já possui funcionalidades suficientes para atender o
requisito básico deste estudo, que é utilizar inteligência
artificial como apoio ao aprendizado de programação. Para
tal, basta fazer uso da VectorStoreIndex apresentada
na Figura 9 e convertê-la para um motor de conversação
com a função VectorStoreIndex.as_chat_engine. A Fi-
gura 10 apresenta um exemplo de uso, onde a resposta
obtida foi:

Um algoritmo é um conjunto finito de regras,
bem definidas, para a solução de um problema

em um tempo finito. Ou, de outra forma, é um
texto que contém uma série de ações primitivas
que, quando executadas, operam sobre os dados,
transformando-os em saídas.

(LLaMA 3, ReAct)

O modelo gerador da resposta anterior foi o LLaMA 3
70B Instruct sem quaisquer modificações de hiperparâme-
tros ou prompt engineering, munido com o contexto dos
conteúdos de aula mencionados na Seção 4.11.

Importante mencionar a opção chat_mode do motor de
conversação. A documentação do LlamaIndex entra em
detalhes sobre cada opção. A opção ChatMode.REACT usa
o motor de busca como ferramenta de apoio ao LLM,
decidindo se vai ou não fazer uma busca contextual. Essa
opção permite que o modelo responda a perguntas que
não estão explicitamente definidas em seus provedores
de contexto. A opção ChatMode.CONDENSE_PLUS_CONTEXT
condensa o histórico da conversa com o usuário em uma
única pergunta, busca em seus provedores de contexto in-
formações adicionais sobre aquele assunto e então repassa
ao LLM o contexto encontrado e a mensagem verbatim do
usuário. Ambas opções foram testadas e ambas trouxeram
bons resultados. A Figura 11 apresenta um exemplo de
uso da opção ChatMode.CONDENSE_PLUS_CONTEXT, onde a
resposta obtida foi:

Um algoritmo é um conjunto finito de regras
bem definidas para a solução de um problema em
um tempo finito. Além disso, também é definido
como um texto (como uma receita de bolo) onde
cada linha contém uma ação primitiva (ação
elementar passível de execução por um humano
ou uma máquina).

(LLaMA 3, Condense Plus Context)

O modo Condense Plus Context, por avaliação experi-
encial, apresentou resultados um pouco mais satisfatórias
do que o modo ReAct, consistentemente demonstrando um
entendimento do contexto oferecido pelo RAG e usuário.
Um exemplo disso está nas respostas anteriores, onde o
Condense Plus Context menciona “receita de bolo”, um
exemplo que foi dado em um dos slides de aula. Em outras
palavras, esse modo repassou de maneira mais explícita
as informações providas pelo RAG. Sendo assim, a opção
ChatMode.CONDENSE_PLUS_CONTEXT foi escolhida para a
implementação final.

Um ponto de atenção ao utilizar LLMs em línguas
diferentes daquelas em que foram treinados é a perda de
contexto e detalhes específicos da língua, pois interna-
mente é utilizado um modelo de tradução automática para
converter o texto em português para o inglês. Essa tradu-
ção não é perfeita, podendo levar a respostas imprecisas.

Para demonstrar que o sistema consegue manter um
histórico e um contexto de conversa, foi perguntado no-
vamente o que é um algoritmo, e a resposta obtida foi:

Você já fez essa pergunta anteriormente!
Lembre-se de que um algoritmo é um conjunto
finito de regras, bem definidas, para a solução de

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 16

1 engine = index.as_chat_engine(
2 chat_mode=ChatMode.REACT,
3 verbose=True)
4

5 response = engine.chat('O que é um
algoritmo?')↩→

6 print(response)

Figura 10. Utilizando o LlamaIndex como motor de conversação no
modo ChatMode.REACT. A saída está apresentada na Subseção 4.12,
modo ReAct.

1 from llama_index.core.chat_engine import (
2 CondensePlusContextChatEngine
3)
4

5 cls = CondensePlusContextChatEngine
6 engine = cls.from_defaults(
7 index.as_retriever(),
8 verbose=True
9)

10

11 response = engine.chat('O que é um
algoritmo?')↩→

12 print(response)

Figura 11. Utilizando o LlamaIndex como motor de conversação no
modo ChatMode.CONDENSE_PLUS_CONTEXT. A saída está apresentada
na Subseção 4.12, modo Condense Plus Context. Só se define cls na
linha 5 para evitar extensão horizontal.

um problema em um tempo finito. Ou, de uma
forma mais coloquial, é como uma “receita de
bolo” onde cada linha contém uma ação primi-
tiva.
Mas, como você já conhece essa definição, vamos
ir um pouco mais além! Você sabe que os algorit-
mos podem ser classificados em diferentes tipos,
como algoritmos de ordenação, algoritmos de
busca, algoritmos de criptografia, entre outros?
Você gostaria de explorar mais sobre os diferentes
tipos de algoritmos e suas aplicações? Ou talvez
você queira saber como os algoritmos são proje-
tados e implementados em diferentes linguagens
de programação?

(LLaMA 3, Condense Plus Context)

Essa resposta demonstra que o sistema, além de ser
capaz de manter um histórico, tenta instigar e guiar o
usuário para um aprendizado mais profundo. O modelo
foi instruído a apresentar esse comportamento de “guia”
por sua prompt de sistema (Figura 16).

A abordagem apresentada nas Figuras 10 e 11 é limitada
à linha de comando (CLI), Jupyter Notebooks e afins.
Em outras palavras, não é necessariamente amigável para
todos os usuários. Ela também não apresenta mecanismos
de controle de acesso, interface web, monitoramento de
uso, e outras funcionalidades desejadas neste projeto. Para
atingir esses requisitos se faz necessária uma interface

de usuário. Neste trabalho é utilizada a OpenWebUI12,
uma interface web de código aberto desenvolvida pela
comunidade e de simples instalação e configuração [80].
Outras interfaces populares são a AnythingLLM13 e o
LLM Studio14.

4.13 Interface web
A OpenWebUI, interface web em utilização, é um projeto
maduro que possui muitas opções atraentes para este
estudo. Além disso, ela possui um sistema de RAG próprio
que poderia ter sido utilizado mas não apresentou resulta-
dos satisfatórios durante o período de testes. Para o RAG,
foi implementada uma pipeline com base no framework
Pipelines apresentado nas seções a seguir. Atrativos da
OpenWebUI incluem:
• Integração direta com Ollama.
• Controle de acesso de usuários.
• Limitações de quantidade de requisições.
• Integração com sistemas de autenticação (SSO) como

Azure Entra ID e OAuth.
• Modificação de modelos do Ollama diretamente pela

interface.
• Execução em Docker.
A Figura 12 apresenta a página inicial de um usuário

autenticado na OpenWebUI. Já a Figura 13 apresenta um
exemplo de uso, onde o usuário pergunta “O que é um
algoritmo? ” e o sistema o responde. Essa interface é, na
percepção do autor, extremamente intuitiva e remete à
interface do ChatGPT da OpenAI.

4.14 O que são pipelines?
Em poucas palavras, pipelines são uma sequência de ações
a serem tomadas a fim de gerar um resultado a partir de
uma entrada. Esse conceito é utilizado em muitas áreas da
computação. Alguns exemplos são as pipelines de entrega
contínua (GitHub CI/CD, GitLab pipelines, Bamboo),
pipelines de processamento de dados, pipelines de trans-
formações de dados do LlamaIndex, entre outras. Todos
esses exemplos recebem uma entrada, atuam sobre ela e
geram um resultado. Por exemplo, as pipelines de entrega
contínua (CI/CD) recebem de entrada um código fonte,
o compilam, executam testes unitários e afins, assinam o
binário e “entregam” um ou vários executáveis para serem
distribuídos.

4.15 LlamaIndex e a OpenWebUI
Para que fosse possível integrar nosso sistema RAG com a
interface web escolhida, foi necessário fazer uso de uma
pipeline personalizada. Os mantenedores do projeto da
OpenWebUI desenvolveram um framework agnóstico à
interface chamado Pipelines15 que permite a criação de
fluxos de trabalho personalizados para quaisquer interfaces

12Disponível em: https://openwebui.com
13Disponível em: https://useanything.com
14Disponível em: https://lmstudio.ai
15Disponível em: https://docs.openwebui.com/pipelines

https://openwebui.com
https://useanything.com
https://lmstudio.ai
https://docs.openwebui.com/pipelines

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 17

Figura 12. Página inicial da OpenWebUI. Fonte: autor.

e modelos. Por exemplo, é possível criar uma pipeline que
executa antes do modelo ser chamado e filtre perguntas
indevidas, ou uma que executa após o modelo ser chamado
e filtre respostas de baixa coesão. Também é possível criar
pipelines que adicionam contexto às perguntas, e é nessa
área que o RAG desenvolvido se encaixa. A Figura 14 de-
monstra dois casos de uso de pipelines: um filtro (superior)
e um “qualquer” (inferior), que executa qualquer código
antes ou depois da inferência do modelo, demonstrando as
capacidades de extensão desse sistema.

Nota sobre a terminologia: “pipeline”, em itálico, é o
conjunto de ações a serem tomadas (Subseção 4.14), e “Pi-
pelines”, com capitalização, é o framework desenvolvido
pela OpenWebUI.

A OpenWebUI se conecta à uma instância do Pipelines
como se fosse uma API de inferência qualquer. Além disso,
dependendo do tipo de pipeline, cada pipeline de uma de-
terminada instância do Pipelines aparece na OpenWebUI

como se fosse um LLM auto-contido. No âmbito desse
estudo, a pipeline desenvolvida aparece na lista de modelos
como se fosse um modelo qualquer (Figura 15).

Fazendo uso do Pipelines, a OpenWebUI não se conecta
à instância do Ollama e sim à instância do Pipelines.
Isso traz, infelizmente, a desvantagem de que se perde
o paralelismo de inferência implementado pela OpenWe-
bUI ao se conectar a diversas instâncias do Ollama. No
entando, esse paralelismo pode ser re-implementado pela
própria pipeline desenvolvida, mas está fora do escopo
deste trabalho.

4.16 Integração do LlamaIndex à pipeline
Para integrar o LlamaIndex à pipeline do OpenWebUI,
foi criada uma pipeline que executa as buscas em um
banco vetorial antes da inferência do modelo. A pipeline foi
desenvolvida utilizando uma classe do próprio framework
Pipelines e adicionada a OpenWebUI através de integra-

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 18

Figura 13. Exemplo de uso da OpenWebUI. Fonte: autor.

ções existentes. O código desenvolvido pode ser encontrado
na íntegra no repositório deste projeto16.

Foram adicionadas diversas opções na pipeline desen-
volvida, ou “válvulas” na terminologia do Pipelines, para
que se pudesse modificar o funcionamento do sistema sem
precisar reiniciar os serviços. Algumas opções são visíveis
na Figura 23.

Uma importante configuração e, de certa forma, de-
cisão arquitetônica, é como e onde rodar o modelo. A
pipeline espera um endereço, uma URL, para conectar-
se ao Ollama. Esse endereço pode ser local (localhost,
host.docker.internal) ou remoto, e depende da infra-
estrutura existente ou planejada. Também adicionou-se
suporte a não utilizar o Ollama e sim outros sistemas
de execução de modelos como HuggingFace Transformers,
vLLM, e até mesmo serviços como Groq e OpenAI.

A parte do código da pipeline desenvolvida que faz o
RAG é praticamente uma cópia dos códigos do LlamaIn-
dex apresentados nas seções anteriores. Uma mudança
significativa é a persistência do banco vetorial em um

16Disponível em: https://tcc.debem.dev

contexto de armazenamento (StorageContext) para que
não seja necessário gerar os embeddings dos arquivos toda
vez que o sistema reiniciar. Ao invés disso, eles são persis-
tidos através desse StorageContext, classe que permite o
salvamento e carregamento dos dados em qualquer sistema
compatível com a especificação fsspec — uma biblioteca
que especifica uma interface unificada para interação com
tipos de sistemas de arquivos diferentes (memória, disco,
Amazon S3, FTP, . . .) através de uma API comum [72],
[81]. Por mais que a implementação atual utilize armaze-
namento em disco, a opção de armazenamento em nuvem
é fortemente sugerida para ambientes de produção.

4.17 Modificação da prompt de sistema do modelo
Não basta apenas munir o modelo com informações e
esperar que ele responda da maneira desejada sem instruí-
lo devidamente. Para que o modelo responda de maneira
coerente e contextualizada, é necessário fornecer instru-
ções claras e específicas sobre o que se espera dele. Isso
pode ser obtido por diversas maneiras, e uma delas é a
modificação da prompt de sistema do modelo. A prompt
de sistema, também conhecida como “papel do sistema”,

https://tcc.debem.dev

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 19

Figura 14. Exemplos de pipelines. Fonte: [80]

Figura 15. Exemplo da pipeline na lista de modelos da OpenWebUI.
Fonte: autor.

é uma sequência de texto que é fornecida ao modelo
juntamente com a pergunta do usuário, e é utilizada para
instruir o modelo sobre o que se espera dele. Cada LLM
se comporta de uma maneira diferente; sendo assim, é
necessário refinar e testar diversos tipos de prompts de
sistema no modelo selecionado para determinar qual é o
mais eficaz para a tarefa desejada [51], [64], [82], [83]. A
área de prompt engineering, ou engenharia de prompts,
é a área da IA focada especificamente em criar prompts
eficazes para modelos de linguagem, e é essencial para o
futuro dos LLMs. Segundo [51], prompt engineering é a
arte de se comunicar e interagir com IA Generativa17.

Para se obter uma prompt de sistema eficiente, foram
aplicadas diversas técnicas diferentes baseadas em [84],
[85] e [86]–[88] como zero-shot, persona ou role-play e
chain-of-thought. Em [84], [85] é apresentado o acrônimo
CLEAR, que define um framework de como uma prompt
deve ser: concisa, lógica, explícita, adaptativa e reflectiva.
Já [86] apresenta um guia com táticas e estratégias para
se criar prompts eficazes para modelos de linguagem, e se
alinha com o framework CLEAR. A Tabela I apresenta

17Prompt engineering is the art of communicating and interacting
with generative AI

Tabela I
Exemplos de prompts ruins e suas versões melhoradas.

Fonte: [86].

Pior Melhor

How do I add numbers in Ex-
cel?

How do I add up a row of dollar
amounts in Excel? I want to do
this automatically for a whole
sheet of rows with all the totals
ending up on the right in a
column called “Total”.

Who’s president? Who was the president of Me-
xico in 2021, and how frequen-
tly are elections held?

Write code to calculate the Fi-
bonacci sequence.

Write a TypeScript function to
efficiently calculate the Fibo-
nacci sequence. Comment the
code liberally to explain what
each piece does and why it’s
written that way.

alguns exemplos de prompts ruins e suas versões melhora-
das [86].

Outra estratégia utilizada foi a de fazer o modelo adotar
uma personalidade, ou “persona”, que é uma maneira de
fazer o modelo atuar em um determinado papel (role-
play) [45]. Essa técnica foi muito eficaz. Por exemplo, se
pode dizer ao modelo, “Atue como um comediante” ou
“Você é um tutor de matemática excelente” [86].

Como mencionado anteriormente, cada LLM se com-
porta de uma maneira diferente e é necessário testar cada
caso de maneira iterativa para determinar qual é a melhor
prompt de sistema para a tarefa desejada. Ou seja, o
LLaMA 3 se comporta de uma maneira única. Na docu-
mentação do LLaMA 3 existe uma seção específica sobre
as técnicas de prompt engineering que são mais eficazes
para esse modelo. Segundo [45], LLMs se comportam bem
quando são dados um papel específico a cumprir, e a do-
cumentação do LLaMA 3 sugere a mesma abordagem [52].
Outras técnicas como chain-of-thought [89] e limitação de

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 20

1 Act as a teacher assistant and answer questions using the provided context.
2 Your goal is to help students and teachers by providing cohesive and correct responses based

on educational material, while applying guided learning techniques.↩→

3 Give examples and cite the context whenever possible.
4 Don't mention 'according to the context' or anything related to that, ever.
5 ## Instructions
6 1. External Information: Use external information from the vector database to answer

questions. Select the most relevant and reliable information available.↩→

7 2. Guided Learning Techniques: Avoid giving direct answers. Instead, guide the user through
the learning process, encouraging critical thinking and discovery.↩→

8 3. Coherent and Correct Responses: Ensure that all responses are coherent and correct,
strictly following the educational material provided.↩→

9 4. Inference Capability: Use your skills to accurately deduce and infer information.
10 5. User-Friendly Interface: Be easy to use and access. Provide clear and well-structured

responses suitable for a web interface.↩→

11 6. Value Addition: Add value for both students and teachers. Offer useful insights,
pedagogical guidance, and support the teaching-learning process.↩→

12 7. Best-effort: The user is a beginner, and may use terms incorrectly or in other languages.
Do your best to understand what they mean.↩→

13 ## User Interaction
14 - Interactive Guidance: Ask the user if they would like more details or additional examples.
15 - Encourage Exploration: Motivate users to explore more about the topic by suggesting

additional resources or related questions.↩→

16 ## Additional Information
17 - Utilize the context provided in the vector database to enrich your responses.
18 - Ensure your answers are always up-to-date and based on the most recent information

available.↩→

19 Your mission is to provide a rich and interactive learning experience, helping students and
teachers achieve their educational goals efficiently and effectively.↩→

Figura 16. Prompt do sistema utilizada para gerar os resultados apresentados. Fonte: autor.

tokens extrâneos também são sugeridas e foram aplicadas
durante o desenvolvimento do sistema.

A prompt de sistema “final” utilizada neste trabalho
é apresentada na Figura 16. Para montar essa prompt,
aplicou-se todas as técnicas de prompt engineering previa-
mente mencionadas, assim como uma abordagem iterativa.
Seguindo a documentação do LLaMA 3, a prompt foi
dividida em seções, cada uma com um propósito específico.
Não foram adicionados exemplos de respostas esperadas
(few-shot prompting) pois não foram necessários para a
tarefa em questão. Para evitar que o modelo diga “segundo
o contexto”, “de acordo com o contexto”, ou algo similar,
foi adicionado um item específico na prompt que proíbe
o modelo de fazer isso. Ao fim das intruções e regras, foi
adicionado um resumo do que se espera do modelo, e o
papel que ele deve desempenhar, para reforçar o que se
espera dele [45], [87]–[89].

Apesar de prompt engineering ser uma técnica poderosa,
ela não é uma solução mágica e possui limitações. Nesses
casos, pode ser necessário tomar uma abordagem diferente,
como as modificações de hiperparâmetros do modelo, ou
até mesmo a troca do modelo por um mais adequado.

4.18 Hiperparâmetros do LLM e outras opções
Caso o sistema não apresente resultados satisfatórios, é
possível modificar tanto os parâmetros do RAG quanto

os hiperparâmetros do modelo. No caso do LLaMA 3, os
hiperparâmetros temperature e top_p são modificáveis.
Resumidamente, o top_p controla o espaço de busca do
vocabulário durante a geração, e a temperature controla
a aleatoriedade desse vocabulário. Uma temperature de
0 produz resultados quase determinísticos [52].

4.19 Fluxo básico de dados
A Figura 17 apresenta um diagrama do fluxo de chamadas
no sistema desenvolvido quando o usuário envia uma
mensagem. Assume-se que a pipeline e o RAG já haviam
sido iniciados; ou seja, não é a primeira inicialização,
pois nesses casos é necessário gerar o banco vetorial. Um
“nodo” refere-se a um pedaço (chunk) de um documento
já indexado. As respostas geradas pelo modelo são um
conjunto cumulativo de tokens, onde cada iteração adici-
ona alguns tokens a esse conjunto. A cada iteração, esses
output tokens (tokens de saída) são enviados à pipeline, e
por isso essas chamadas estão dentro de um loop. O usuário
interage com a interface web, que envia a mensagem para a
pipeline do Pipelines. A pipeline executa a busca no banco
vetorial do RAG, e então envia a pergunta e o contexto
para o modelo. O modelo gera uma resposta, que é enviada
de volta para a pipeline, que então a envia de volta para
a interface web.

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 21

Interface Web Pipeline RAG Modelo

Histórico

Pergunta
Pergunta

Embeddings

Busca no
banco vetorial

Embeddings

Nodos relevantes
Nodos relevantes

Contexto
Contexto

Pergunta e contexto
Nova prompt

System prompt, nova prompt, histórico

Input tokens

Output
Resposta gerada

Stream/loopStream/loop Consumo dos tokens de entrada

Fim da inferência
Resposta

Figura 17. Diagrama UML do fluxo de dados no sistema desenvolvido. Fonte: autor.

4.20 Integração com sistemas de learning analytics

O sistema desenvolvido integra-se com sistemas de lear-
ning analytics para monitorar mensagens de usuários e
gerar relatórios de desempenho. A integração demonstrada
a seguir utiliza a pipeline para enviar mensagens para uma
API externa básica. Essa API foi escrita em Python e
utiliza a biblioteca FastAPI18 para criar um servidor web
que recebe mensagens e as armazena em um banco de
dados PostgreSQL19. As mensagens armazenadas seguem
o formato apresentado na Figura 18, uma rota que adici-
ona um par mensagem e resposta a determinado usuário.

18Disponível em: https://fastapi.tiangolo.com
19Disponível em: https://www.postgresql.org

Essa API é um exemplo básico e não deve ser utilizada em
ambientes de produção sem modificações significativas.

Para agregar valor, implementou-se também uma rota
que retorna todos os tópicos das conversas armazenadas
para um determinado usuário. Essa rota foi criada como
uma prova de conceito para demonstrar a integração com
sistemas de learning analytics. A Figura 19 apresenta o
formato dessa rota. Ao acessar essa rota com o student_id
do usuário que enviou as mensagens “O que é um algo-
ritmo? ” e “Como eu faço um if em Java? ”, esse serviço
retornou os seguintes tópicos:

• Algoritmos
• Programação
• Linguagem Algorítmica

https://fastapi.tiangolo.com
https://www.postgresql.org

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 22

• Estrutura de Controle de Fluxo
A conversa repassada ao gerador de tópicos envolveu os

tópicos retornados, logo a resposta foi satisfatória.

post /api/{student_id}/messages/
Adiciona uma mensagem ao usuário.

Parameter
student_id UUID
Identificador do usuário na OpenWebUI.
Body application/json

{
" content ": " string ",
" response ": " string "

}

Response application/json
200 OK

{
" content ": " string ",
" response ": " string ",
"id": 0,
" student_id ": UUID

}

Figura 18. Formato das mensagens enviadas pela pipeline para a
API de learning analytics. Fonte: autor.

get /api/{student_id}/generate_topics
Gera tópicos das conversas de um usuário.

Parameter
student_id UUID
Identificador do usuário na OpenWebUI.
Response application/json
200 OK

[" string "]

Figura 19. Rota de geração automática de tópicos da conversa entre
um usuário e o sistema. Fonte: autor.

Essas funcionalidades já satisfazem a prova de conceito
de integração com sistemas de learning analytics dese-
jada. O código completo da API, assim como sua confi-
guração de Docker Compose, encontra-se no repositório
deste projeto20. As modificações necessárias na pipeline
para integrar com essa API também estão disponíveis no
repositório, na função Pipeline.outlet().

V. Implantação em ambientes de teste
Nessa seção é apresentado um exemplo de implantação
(deployment) do sistema completo em um ambiente de

20Disponível em: https://tcc.debem.dev

testes. Durante o desenvolvimento do trabalho testou-se
o sistema em diversos ambientes, como Google Colab,
Jupyter Notebook, servidores locais e servidores remotos.
Essa seção apresenta o que foi testado e seus resultados.

5.1 Ambiente local

Os primeiros testes foram feitos localmente, em um com-
putador pessoal com uma GPU NVIDIA RTX 2080 Ti com
11 GB de memória. As ferramentas de alto nível utilizadas
nessa etapa foram: Ollama, OpenWebUI, Pipelines, Lla-
maIndex. Para executar essas ferramentas, foi utilizado
WSL 2 (Windows Subsystem for Linux) com Ubuntu
22.04 LTS e Docker Compose21. Seguindo a documentação
oficial do projeto Ollama, a ferramenta foi instalada como
um serviço Linux tradicional e configurada para rodar em
segundo plano [68].

Após os testes iniciais de implementação e integração,
passou-se a utilizar uma infraestrutura especializada para
o restante dos testes, apresentada na Seção VII..

As Figuras 20 e 21 mostram as configurações utilizadas
no OpenWebUI e Pipelines como serviços do Docker Com-
pose, respectivamente. No contexto de Docker Compose,
“serviço” é um termo genérico que se refere a uma ou
mais instâncias de um contêiner Docker. Ao analisar as
figuras é possível observar que ambos os serviços alocam
recursos de GPU, assim como alocam volumes para ar-
mazenamento de dados persistentes e configuram portas
para comunicação com o mundo exterior. A Figura 20
apresenta a configuração do serviço OpenWebUI, que é
responsável por gerenciar a interface web do sistema. Nela,
é montado um volume para armazenar dados persistentes
desse contêiner. Também desabilitou-se a autenticação
do sistema e configurou-se o nível de log para um nível
mais verboso para facilitar os testes. Além disso, a porta
local 3030 está mapeada para a porta 8080 do contêiner.
A Figura 21 apresenta a configuração do serviço Pipelines,
que é responsável por gerenciar as pipelines do sistema.
Nela, são montados três volumes, em ordem: um para o
código da pipeline que será executada, um para os dados
do RAG, e um para os dados gerais do contêiner. A variável
PIPELINES_URLS foi omitida por questões de espaço, mas
é uma lista de URLs de arquivos de pipeline que serão
carregados ao “subir” o sistema. Essa variável pode conter
algo como PIPELINES_URLS=http://a.com/pipe.py, mas
também é possível passar um arquivo local mudando o
protocolo para file://, como file:///app/foo.py. Essa
funcionalidade não está documentada, mas foi descoberta
pelo autor ao longo do desenvolvimento desse trabalho ao
analisar o código fonte do Pipelines.

Para “subir” ou “levantar” os serviços utiliza-se o co-
mando docker compose up, que cria — ou reutiliza caso
já existam — os containers da OpenWebUI e do Pipelines.
O Pipelines sobe com os arquivos que serão utilizados no
RAG na no diretório /app/rag-data/ através de um vo-

21A instalação e uso dessas ferramentas não faz parte do escopo
do trabalho.

https://tcc.debem.dev

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 23

1 open-webui:
2 image: ghcr.io/open-webui/open-webui:cuda
3 environment:
4 - WEBUI_AUTH=False
5 - GLOBAL_LOG_LEVEL=DEBUG
6 ports:
7 - "3030:8080"
8 extra_hosts:
9 - "host.docker.internal:host-gateway"

10 volumes:
11 - open-webui:/app/backend/data
12 deploy:
13 resources:
14 reservations:
15 devices:
16 - capabilities: [gpu]
17 count: all

Figura 20. Especificação do serviço OpenWebUI em Docker Com-
pose.

1 pipelines:
2 image: ghcr.io/open-webui/pipelines:main
3 environment:
4 - PIPELINES_URLS=...
5 ports:
6 - "9099:9099"
7 extra_hosts:
8 - "host.docker.internal:host-gateway"
9 volumes:

10 - type: bind
11 source: ./pipelines/pipe.py
12 target: /app/pipelines/pipe.py
13

14 - type: bind
15 source: ./rag-data
16 target: /app/rag-data
17

18 - pipelines:/app/pipelines
19 deploy:
20 resources:
21 reservations:
22 devices:
23 - capabilities: [gpu]
24 count: all

Figura 21. Especificação do serviço Pipelines em Docker Compose.

lume compartilhado (Figura 21, linha 14) entre o container
e o hospedeiro (a máquina local ou host).

Levantados os serviços, é possível acessar a interface
web do OpenWebUI e a documentação interativa do
Pipelines através dos endereços http://localhost:3030 e
http://localhost:9099/docs, respectivamente.

Quando o sistema é executado pela primeira vez, é
necessário configurar a OpenWebUI para que ela utilize
o Pipelines. Nas execuções subsequentes, assumindo que
está sendo utilizado o Docker Compose corretamente, essa

configuração fica salva. Para configurar a OpenWebUI, é
necessário acessar sua interface web, acessar o painel de
administração, ir em “Conexões” (ou “Connections”), e
adicionar uma nova “OpenAI API” com o endereço do ser-
viço Pipelines. Nesse caso, o endereço é http://pipelines:
9099 e a chave de API é 0p3n-w3bu! por padrão. É possível
conectar a OpenWebUI a diversas instâncias do Pipelines
e a diversas APIs de IA, como OpenAI, Google Cloud ao
mesmo tempo. Dito isso, é importante reforçar os riscos
de segurança que utilizar sistemas externos pode causar
(Seção 4.5.1). A Figura 22 apresenta a tela de configuração
da OpenWebUI já configurada para se conectar a uma ins-
tância do Pipelines utilizando a chave padrão. O símbolo
de adição à direita permite a adição de novas conexões à
outras instâncias do Pipelines ou até mesmo outras APIs
de inferência como Groq ou OpenAI. A Figura 23 mostra
a tela de configurações das pipelines carregadas em uma
instância do Pipelines. Nessa tela é possível fazer o upload
de novas pipelines, assim como baixá-las de um repositório
do GitHub diretamente. É nesse ambiente também que se
faz possível a configuração da pipeline escolhida através
de “válvulas” (valves), definidas pelo desenvolvedor da
pipeline.

VI. Implantação em ambiente de produção
Nessa seção é apresentado um exemplo de implantação
(deployment) do sistema completo em produção, que
entende-se por um ambiente onde o sistema estará dis-
ponível para uso por usuários finais, ou onde o sistema
será utilizado de fato. A Figura 24 mostra um diagrama da
infraestrutura sugerida para colocar o sistema em uso, não
se atentando a detalhes de produtos específicos (marcas e
modelos de servidores, roteadores), nem a configurações
dos serviços ou da rede. Itens marcados com um asterisco
representam serviços genéricos e em alto nível, onde a
escolha de qual empresa ou serviço utilizar fica a critério
de quem estiver implementando a arquitetura.

A configuração do sistema fica sob responsabilidade do
implantador. Dito isso, a grande maioria das configura-
ções necessárias para este projeto são apresentadas na
Seção 5.1, como endereços de conexão e modelos deseja-
dos. Configurações específicas de serviços externos (load
balancer, por exemplo) variam muito e, por isso, não são
abordadas em detalhes.

Ao analisar a Figura 24 observa-se que o sistema é
composto por um firewall, uma camada de autenticação,
um load balancer (LB, balanceador de carga), um web
application firewall (WAF, um tipo de firewall específico
para aplicações web), a Web UI e o modelo. Dos itens
mencionados, o firewall, a camada de autenticação, o load
balancer e o WAF são serviços genéricos, onde a escolha
de qual empresa ou serviço utilizar fica a critério de quem
estiver implementando a arquitetura.
Firewall: O firewall é responsável por proteger a rede
interna de acessos não autorizados e outros ataques a nível
de rede.
Autenticação: A camada de autenticação é responsável
por autenticar os usuários, garantindo que apenas usuários

http://localhost:3030
http://localhost:9099/docs
http://pipelines:9099
http://pipelines:9099

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 24

Figura 22. Tela de conexões da OpenWebUI conectando a uma instância do Pipelines. Fonte: autor.

Figura 23. Tela de configuração de uma pipeline. Fonte: autor.

autorizados acessem o sistema. É sugerido que a autenti-
cação seja feita utilizando o sistema de autenticação único
(single sign-on, SSO) da instituição, como o Microsoft
Entra ID (conhecido também como Microsoft Azure AD)
ou o Google Workspace.
Load balancer : O load balancer distribui a carga de requi-
sições entre os servidores, garantindo que nenhum servidor
fique sobrecarregado. Além disso, ele é responsável por
fazer a terminação SSL, ou seja, a decodificação do tráfego
criptografado, permitindo que o WAF inspecione o tráfego
e atue em caso de ataques.
WAF: O WAF é um tipo de firewall específico para aplica-
ções web que protege a aplicação de ataques direcionados
a serviços web como injeção de SQL, cross-site scripting
(XSS), e mais [90]. Para que o WAF funcione correta-
mente, é necessário que o tráfego esteja descriptografado,

por isso a importância da terminação SSL no load balancer.
Após a inspeção do tráfego pelo WAF, ele é encaminhado
para o destino original dado pelo load balancer. WAFs mo-
dernos atuam como filtros, muitas vezes sendo integrados
diretamente ao load balancer como um mesmo produto ou
serviço.
Web UI: A Web UI é a interface web do sistema, onde
os usuários interagem com o modelo. Aqui é utilizada
a OpenWebUI. A pipeline desenvolvida encontra-se nesse
mesmo nodo.
Modelo: O modelo representa o sistema que está execu-
tando o LLM e realizando as tarefas de inferência. Esse
projeto utiliza a ferramenta Ollama.

Por exemplo, os seguintes serviços podem ser utilizados
para cada item não-especificado:
• Firewall: Fortinet FortiGate-60E.
• Autenticação: Microsoft Entra ID integrado à plata-

forma Cloudflare Zero Trust.
• Load balancer : HAProxy22 em um servidor dedicado.
• WAF: Coraza23 no mesmo servidor do HAProxy.
Se busca com esse exemplo mostrar que a infraestrutura

necessária para colocar o sistema em produção pode ser
relativamente simples e de baixo custo operacional. Ou
seja, é possível implantar o sistema em produção sem a
necessidade de grandes investimentos em infraestrutura,
o que pode ser um fator importante para instituições de
ensino com recursos limitados.

De modo geral, o Ollama é o único serviço que precisa
estar um servidor dedicado com alto poder de inferência,
pois é responsável por executar os modelos de IA. Sendo
assim, o servidor que hospeda o Ollama idealmente deve
possuir uma GPU de alto desempenho e com ampla memó-
ria, como as NVIDIA A100 ou NVIDIA A6000 ou NVIDIA
V100, para garantir que os modelos sejam executados
de forma eficiente. O Ollama suporta múltiplas placas
de vídeo em um mesmo servidor, o que pode aumentar
sua capacidade de inferência; entretanto, as requisições
são atendidads de maneira síncrona, e rodar mais de
uma instância do Ollama em um mesmo servidor não é

22Disponível em: https://github.com/haproxy/haproxy
23Disponível em: https://github.com/corazawaf/coraza

https://github.com/haproxy/haproxy
https://github.com/corazawaf/coraza

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 25

Internet

Firewall* Autenticação* Load balancer* WAF* Web UI Modelo

Plugin

Moodle

Figura 24. Diagrama da possível organização em um ambiente de produção para o sistema apresentado. Fonte: autor.

oficialmente suportado. Se sugere que, caso a demanda seja
suficientemente alta, sejam disponibilizados diversos servi-
dores preferencialmente idênticos que executem o Ollama e
tenham sua própria placa de vídeo. A OpenWebUI suporta
conexão com múltiplas instâncias do Ollama, distribuindo
as requisições entre elas automaticamente. Outra suges-
tão é a adoção de sistemas que suportem o paralelismo
nativamente como o vLLM, mencionado na Seção 4.5.

Os demais serviços apresentados podem ser executados
em máquinas virtuais (Docker, ProxMox24), servidores
dedicados de baixo custo (microcomputadores ou micro-
processadores), ou em serviços de hospedagem na nuvem.

6.1 Integração com o Moodle
O Moodle25 é uma plataforma muito utilizada por institui-
ções de ensino para gerência de materiais de aula e intera-
ção com os estudantes. O Moodle permite a instalação de
plugins que adicionam funcionalidades à plataforma, o que
torna possível a integração do nosso sistema diretamente
com a plataforma. Seria possível integrar tanto a OpenWe-
bUI quanto o modelo com o Moodle, permitindo que os
estudantes acessem o sistema diretamente da plataforma,
sem a necessidade de acessar um site externo.

Um exemplo de integração é a adição de uma caixa de
diálogo na interface do Moodle que permite a interação
direta com a pipeline, sem a necessidade de redireciona-
mento. Como a pipeline é uma API que segue a especifi-
cação de APIs para inferência da OpenAI, é possível fazer
requisições HTTP diretamente para ela, o que facilita essa
integração. Outro exemplo seria a adição de um botão
na interface do Moodle que redireciona o usuário para
a OpenWebUI, onde ele pode interagir com o sistema
normalmente. As conexões pontilhadas na Figura 24 entre
o Moodle, a OpenWebUI e a pipeline representam dois dos
possíveis métodos de integração já mencionados.

VII. Infraestrutura utilizada
A inferência de um LLM é uma tarefa computacionalmente
intensiva, e modelos maiores como o LLaMA 3 70B exi-
gem uma quantidade significativa de memória e poder de

24Disponível em: https://www.proxmox.com
25Disponível em: https://moodle.org

Tabela II
Requisitos computacionais de LLMs, versões Instruct.

Fonte: [68].

Família Parâmetros Quantização Tamanho

LLaMA 3

8B Q4_0 4.7 GB
8B FP16 16 GB
70B Q4_0 40 GB
70B Q8_0 75 GB
70B FP16 141 GB

Codellama
7B Q4_0 3.8 GB
7B FP16 13 GB
70B Q4_0 39 GB
70B FP16 138 GB

Gemma 2
9B Q4_0 5.5 GB
9B FP16 18 GB
27B Q4_0 16 GB
27B FP16 54 GB

Mixtral
8x7B Q4_0 26 GB
8x7B FP16 93 GB
8x22B Q4_0 80 GB
8x22B FP16 281 GB

processamento. A Tabela II apresenta os requisitos compu-
tacionais de alguns LLMs em suas versões Instruct [68].
Além do requisito de memória, é importante considerar
o tempo de inferência, que pode ser significativo para
modelos maiores. Essa medida não foi considerada ao
escolher a infraestrutura, pois o tempo de inferência em
testes não é um fator crítico.

Para realizar os testes e treinamentos necessários, foi
utilizada uma infraestrutura de servidores dedicados com
GPUs NVIDIA A100 de 80 GB de VRAM e NVIDIA RTX
2080 Ti de 11 GB de VRAM, o que permitiu a utilização
do modelo LLaMA 3 70B e quantização 8 bit. Notou-se
uma diferença entre os resultados obtidos com modelos
quantizados em 8 bit e 4 bit, sendo que o modelo quanti-
zado em 8 bit gerava respostas um pouco mais coerentes.
Esses servidores foram alugados de um provedor de nuvem
e configurados com o Ollama e Jupyter Notebooks para
execução dos códigos. Reforça-se novamente a importância
de verificar a segurança dos dados ao utilizar serviços de
terceiros (Seção 4.5.1).

https://www.proxmox.com
https://moodle.org

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 26

VIII. Resultados e contribuições

Com esse trabalho, espera-se contribuir para o apoio
ao aprendizado da programação no ensino superior, au-
xiliando estudantes a obterem resultados otimizados. É
esperado que o modelo treinado seja capaz de responder
perguntas dos estudantes de forma eficiente, eficaz e perso-
nalizada, podendo com isso ser utilizado como ferramenta
de apoio ao aprendizado.

Este trabalho fornece uma ferramenta que gera dados
para análise de aprendizado (learning analytics), podendo
levar a mudanças nos objetos de aprendizagem e meto-
dologias de aprendizagem utilizadas pelo professor. Por
exemplo, o sistema pode fornecer informações (insights)
sobre as principais dúvidas dos estudantes, os tópicos mais
difíceis de serem compreendidos, entre outros, indicando
até mesmo a necessidade de mudanças no currículo ou na
abordagem de ensino.

8.1 Resultados obtidos
Os resultados obtidos com a implantação do sistema em
ambiente de teste foram satisfatórios. O sistema foi capaz
de responder perguntas de forma coerente e correta, for-
necendo informações úteis e relevantes dado um contexto.

Por mais que não tenham sido conduzidos testes do sis-
tema desenvolvido com alunos de uma turma da disciplina
de Fundamentos da Programação, a metodologia de testes
e perguntas utilizadas baseou-se em perguntas reais desses
alunos.

A Figura 25 apresenta um exemplo de interação entre
um usuário intencionalmente vago e impreciso, e o LLM.
O usuário está sendo propositalmente vago para avaliar a
capacidade do assistente de inferir o contexto e fornecer
uma resposta adequada. Essa interação se deu através da
OpenWebUI e fora convertida para Markdown pois não foi
possível englobar toda a conversa em uma imagem só. O
usuário não dá muitos detalhes sobre o problema, mas o
assistente foi capaz de inferir o contexto e fornecer uma
resposta adequada, guiando o usuário para a solução do
problema. O exemplo que o assistente deu ao falar sobre
a estrutura do for em Java foi citada diretamente dos
materiais fornecidos pelo RAG, demonstrando que ele foi
capaz de absorver e aplicar o conhecimento fornecido.

Um resultado impressionante foi o seguinte, que, ao
ser perguntado “O que é uma rede neural? ”, o modelo
respondeu o seguinte:

Uma rede neural! Isso é um tópico interessante
em inteligência artificial. Embora não esteja di-
retamente relacionado ao conteúdo de linguagem
algorítmica e programação que estamos estu-
dando, posso dar uma visão geral sobre o que
é uma rede neural.
Uma rede neural é um modelo de processamento
de informações inspirado no funcionamento do
cérebro humano. É composta por uma série de ca-
madas de neurônios artificiais que se comunicam
entre si, processando e transmitindo informações.

Imagine uma rede de neurônios que se conectam
e se comunicam entre si, permitindo que a infor-
mação flua e seja processada de forma complexa.
Isso permite que as redes neurais aprendam e
sejam treinadas para realizar tarefas como reco-
nhecimento de padrões, classificação de dados e
tomada de decisões.
No entanto, para entender melhor como as redes
neurais funcionam, precisamos voltar ao básico e
estudar como os algoritmos e a programação são
utilizados para criar essas redes.
Você gostaria de saber mais sobre como os algo-
ritmos são utilizados para criar redes neurais? Ou
gostaria de voltar ao conteúdo de linguagem algo-
rítmica e programação que estamos estudando?

(LLaMA 3, Pipeline)

A relação que o modelo fez entre redes neurais e o
conteúdo da disciplina não está em nenhum dos materiais
passados a ele. Além disso, ele deu uma boa explicação
sobre redes neurais, mesmo que em alto nível, própria
para iniciantes. Somado a isso, reforçou a importância de
estudar os básicos e se dispôs a apoiar o usuário.

De modo geral, o sistema atende as expectativas do
ponto de vista de um discente com dúvidas. Além disso,
como demonstrado na Seção 4.20, o sistema traz ferramen-
tas de suporte ao trabalho do docente.

8.2 Problemas enfrentados
Durante o desenvolvimento e testes do sistema, alguns pro-
blemas foram encontrados e resolvidos. Em um dos testes
iniciais, demonstrado na Figura 26, ao ser questionado que
tipo de modelo ele é, o modelo respondeu “Corolla”, um
tipo de carro. Em outro, ao testar se o modelo mantinha o
contexto, ele começou a falar em inglês; ao ser instruído a
falar português, ele começou a misturar ambas as línguas.
Similar à situação anterior, após mencionar algum termo
em inglês como for ou loop, o modelo gerava o restante
da resposta em inglês. Possivelmente, essa preferência por
inglês é resultado do processo de treino do LLaMA 3, que
utilizou um dataset majoritariamente em inglês.

Além de empecilhos referentes ao uso de IA, foram
encontrados diversas outras situações ao longo do desen-
volvimento do projeto. Uma delas foi a grande quantidade
de maneiras de abordar um mesmo problema ou situa-
ção; muitas vezes se encontraram soluções diferentes que
traziam o mesmo resultado. Por exemplo, a biblioteca Lla-
maIndex apresenta ao menos três maneiras diferentes de se
carregar um arquivo e ao menos sete maneiras diferentes
de interagir com esses dados. Levando em consideração que
existem dezenas de outras bibliotecas de RAG disponíveis,
a quantidade de documentação existente é imensa.

Outros problemas foram os de implementação da pipe-
line. O framework Pipelines é extremamente novo, publi-
cado em Maio de 2024, fato que provavelmente explica a
falta de documentação disponível, o que tornou necessária,
em vezes, a leitura do código-fonte para atingir algum

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 27

1 # User
2 meu programa não tá funcionando
3

4 # Assistant
5 Não funciona, é? Vamos tentar descobrir o que pode estar acontecendo.
6 Você escreveu o programa usando uma linguagem de programação, certo?
7 Pode me mostrar o código do seu programa? Isso vai me ajudar a entender melhor o que pode

estar acontecendo.↩→

8 Além disso, você já tentou executar o programa passo a passo para ver onde ele está falhando?
9 Você está usando algum tipo de loop no seu programa, como o exemplo que vimos na aula de

repetição?↩→

10 Deseja mais detalhes sobre como depurar um programa ou como usar loops de repetição?
11

12 # User
13 for i 0 .. 10 i++
14 imprime(i)
15

16 # Assistant
17 Você está tentando escrever um loop for para imprimir os números de 0 a 10!
18 No entanto, parece que há alguns erros de sintaxe no seu código. Vamos corrigir isso juntos!
19 Em Java, o loop for é escrito da seguinte maneira:
20 ```java
21 for (inicialização; condição; incremento) {
22 // bloco de código
23 }
24 ```
25 No seu caso, você pode escrever o loop for como:
26 ```java
27 for (int i = 0; i <= 10; i++) {
28 System.out.println(i);
29 }
30 ```
31 Observe que:
32 - int i = 0 é a inicialização do loop, onde você define a variável i com valor inicial 0.
33 - i <= 10 é a condição do loop, que verifica se i é menor ou igual a 10.
34 - i++ é o incremento do loop, que aumenta o valor de i em 1 a cada iteração.
35 - System.out.println(i) é o bloco de código que imprime o valor de i na tela.
36 Tente executar esse código e veja se ele funciona como esperado!
37 Deseja mais detalhes sobre como funciona o loop for ou como imprimir valores na tela em Java?

Figura 25. Exemplo de interação entre o usuário e o assistente virtual. Fonte: autor.

Figura 26. Exemplo de resposta inesperada do modelo. Fonte: autor.

determinado objetivo não-documentado. A situação mais
grave encontrada até o momento foi que, ao utilizar o
motor de chat do LlamaIndex, todos os usuários com-
partilhavam um mesmo histórico de conversa. Ou seja,
caso o usuário Alice estivesse conversando sobre laços e

o usuário Bob entrasse no sistema e perguntasse “Qual
a mensagem anterior? ” em uma nova conversa em sua
própria conta, o sistema retornava a Bob a última men-
sagem que trocou com Alice. Um problema gravíssimo,
tanto de coerência quanto de privacidade. Para corrigir
essa situação, modificou-se o código da pipeline para que
apenas o histórico daquele usuário fosse repassado ao
modelo. A Figura 27 apresenta a correção, onde self
refere-se à classe da pipeline.

IX. Limitações

O sistema apresentado possui algumas limitações, tanto
de escopo quanto de implementação.

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 28

1 def pipe(
2 self,
3 user_message: str,
4 model_id: str,
5 messages: list[dict],
6 body: dict,
7) -> Union[str, Generator, Iterator]:
8 response = self.engine.stream_chat(
9 user_message,

10 chat_history=self.dict_to_chatmessages(
11 messages
12)
13)
14 return response.response_gen
15

16 @staticmethod
17 def dict_to_chatmessages(
18 messages: list[dict[str, str]]
19) -> list[ChatMessage]:
20 return [
21 ChatMessage(**msg) for msg in messages
22]

Figura 27. Código de correção do compartilhamento de histórico
entre todos os usuários. As linhas demarcadas (10–12) e a função
dict_to_chatmessages são a correção.

9.1 Limitações de escopo
O estudo se limitou a um único LLM, utilizando apenas
um sistema para rodá-lo (Ollama), com forte integração
com a OpenWebUI e ao Pipelines. Além disso, os dados
utilizados para munir o sistema de conhecimento são
focados em apenas uma disciplina de programação, com
um professor, em apenas uma universidade, ao longo de
um semestre.

9.2 Limitações técnicas
Limitações técnicas também são encontradas, como a ne-
cessidade de um servidor computacionalmente potente —
em outras palavras, de alto custo — para executar um
LLM de maior capacidade de inferência.

A maioria dos LLMs atuais são treinados em corpus
textuais primariamente compostos por conteúdos em in-
glês. Como mencionado na Seção 4.4, o LLaMA 3 não é
diferente: fora treinado em um dataset com 15 trilhões de
tokens, sendo que apenas 5% desse conjunto são de línguas
diferentes do inglês, uma quantidade significativamente
menor de dados. Logo, a performance dos modelos em ou-
tras línguas, por dedução, é menor do que sua performance
quando infere em sua língua-mãe. Essa mesma limitação
se aplicou ao modelo de embedding, como mencionado
na Seção 4.10. Ao dizer “performance”, pode-se interpretar
como problemas de acurácia, limitações de interpretação
de contexto e bias do dataset. Para mitigar essa limitação,
se sugerem algumas estratégias:
• Fine-tuning do modelo em um dataset com mais

dados em português.

• Adicionar sistemas de tradução antes e depois do mo-
delo, como numa pipeline, para que o modelo sempre
execute em sua melhor língua.

X. Considerações finais
Este estudo explorou o uso de Inteligência Artificial Gene-
rativa como uma ferramenta de apoio ao aprendizado de
programação, com o objetivo de investigar seus potenciais
benefícios e limitações. A pesquisa apresentou um sis-
tema que integra materiais didáticos à IA, potencialmente
promovendo ambientes personalizados de aprendizagem
capazes de coletar informações valiosas para análise do
aprendizado. Também foi apresentada uma arquitetura de
implantação do sistema em ambiente de produção, com
sugestões de serviços e configurações.

Os resultados obtidos, a despeito das limitações indica-
das, demonstraram que a implementação de IA Generativa
pode fornecer suporte personalizado aos estudantes, e
acredita-se que possa ajudá-los a superar obstáculos de
aprendizagem de maneira individualizada. O sistema foi
capaz de responder perguntas de forma eficiente e satisfa-
tória, proporcionando feedback em tempo real e exemplos
de código contextualizados, alinhando-se com os materiais
de apoio utilizados nas disciplinas.

Apesar dos benefícios observados, foi identificado, du-
rante o processo de desenvolvimento deste texto por este
autor, algumas limitações, como a necessidade de servido-
res computacionalmente potentes para executar os LLMs,
o que implica em altos custos, o que pode dificultar a ado-
ção desse sistema por instituições com recursos limitados.

Em termos de impacto, espera-se que a adoção de
sistemas de IA Generativa no aprendizado de programação
possa contribuir de alguma forma para dar suporte ao
trabalho do professor. No entanto, este texto também
reforça a importância de docentes e ferramentas de IA
trabalharem juntos, assim como a necessidade de trei-
namentos e capacitações para que os professores possam
utilizar essas ferramentas de forma eficaz. A ferramenta
também visa oferecer informações que facilitem o trabalho
dos docentes, podendo identificar padrões de aprendizado
e áreas de dificuldade dos alunos.

Em suma, acredita-se que este trabalho contribui para
a área de IA como apoio ao aprendizado, demonstrando
que a integração de tecnologias avançadas no aprendizado
de programação tem potencial para tornar o aprendizado
mais acessível, intuitivo e eficiente, beneficiando tanto
alunos quanto instituições de ensino.

XI. Trabalhos futuros
Este estudo apresentou um sistema pensado para ser mo-
dular e de fácil expansão. Áreas de interesse para trabalhos
futuros:
• Treinar um modelo em um dataset com mais dados

em português.
• Testar modelos diferentes de embedding.
• Adicionar à pipeline sistemas de instrumentação au-

tomatizados que recolham dados e logs das conversas
para fim de aplicar técnicas de análise do aprendizado.

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 29

• Verificar a performance do sistema com um dataset
maior.

• Implementar um RAG multi-agente onde cada agente
possui um nível incremental de conhecimento 𝑛𝑖 =
𝑛𝑖−1 + 1. Essa abordagem pode ser útil quando se
deseja limitar o conhecimento de um modelo à uma
sequência incremental de dados. Por exemplo, cada
agente estaria ciente da matéria até certo ponto,
podendo haver a troca de agentes conforme o usuário
avança no currículo.

• Adicionar informações sobre o usuário ao sistema
como arquivos de provas passadas, trabalhos e notas
para personalizar a experiência de modo individual.

• Disponibilizar para grupos de usuários ao longo de um
ou mais semestres para identificar outras potenciali-
dades ou limitações.

Referências
[1] World Economic Forum, “Schools of the future: Defining new

models of education for the fourth industrial revolution,” 2020.
[Online]. Available: https://www3.weforum.org/docs/WEF_
Schools_of_the_Future_Report_2019.pdf

[2] Google for Startups, “Panorama de talen-
tos em tecnologia,” 2023. [Online]. Availa-
ble: https://drive.google.com/file/d/1HdlvsAmLvVHkPW46_
7TqTcHnbn7__gB0/view?usp=share_link

[3] R. M. Hoed, “Análise da evasão em cursos superiores: o caso da
evasão em cursos superiores da área de computação,” 2017.

[4] Í. Alvim, R. Bittencourt, and R. Duran, “Evasão nos cursos de
graduação em computação no Brasil,” 04 2024.

[5] W. DÁvila and L. Giraffa, “Ensino de programação
orientada a objetos para iniciantes: Uma metodologia
para programação criativa,” in Anais do XXXIV Simpósio
Brasileiro de Informática na Educação. Porto Alegre,
RS, Brasil: SBC, 2023, pp. 335–344. [Online]. Available:
https://sol.sbc.org.br/index.php/sbie/article/view/26674

[6] E. Kasneci, K. Seßler, S. Küchemann, M. Bannert, D. De-
mentieva, F. Fischer, U. Gasser, G. Groh, S. Günnemann,
E. Hüllermeier et al., “ChatGPT for good? on opportunities and
challenges of large language models for education,” Learning and
individual differences, vol. 103, p. 102274, 2023.

[7] M. Guzdial, Learner-centered design of computing education:
Research on computing for everyone. Morgan & Claypool
Publishers, 2015.

[8] P. Kinnunen and L. Malmi, “Why students drop out CS1
course?” in Proceedings of the second international workshop
on Computing education research, 2006, pp. 97–108.

[9] R. Takács, J. T. Kárász, S. Takács, Z. Horváth, and
A. Oláh, “Successful steps in higher education to stop
computer science students from attrition,” Interchange, vol. 53,
no. 3, pp. 637–652, Dec 2022. [Online]. Available: https:
//doi.org/10.1007/s10780-022-09476-2

[10] J. M. Wing, “Computational thinking and thinking about com-
puting,” Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 366, no.
1881, pp. 3717–3725, 2008.

[11] C. Watson and F. W. Li, “Failure rates in introductory pro-
gramming revisited,” in Proceedings of the 2014 conference on
Innovation & technology in computer science education, 2014,
pp. 39–44.

[12] T. Gomes, F. Castro, and P. Tedesco, “Desenvolvendo o pensa-
mento computacional na educação infantil: Um toolkit educa-
cional sobre conceitos de programação baseado em storytelling
transmedia,” Sánchez, J, pp. 31–40, 2017.

[13] L. Floridi and M. Chiriatti, “GPT-3: Its nature, scope, limits,
and consequences,” Minds and Machines, vol. 30, pp. 681–694,
2020.

[14] J. Jeon and S. Lee, “Large language models in education: A
focus on the complementary relationship between human tea-
chers and ChatGPT,” Education and Information Technologies,
vol. 28, no. 12, pp. 15 873–15 892, 2023.

[15] I. Celik, M. Dindar, H. Muukkonen, and S. Järvelä, “The
promises and challenges of artificial intelligence for teachers: A
systematic review of research,” TechTrends, vol. 66, no. 4, pp.
616–630, 2022.

[16] G.-J. Hwang and C.-Y. Chang, “A review of opportunities
and challenges of chatbots in education,” Interactive Learning
Environments, vol. 31, no. 7, pp. 4099–4112, 2023. [Online].
Available: https://doi.org/10.1080/10494820.2021.1952615

[17] K. K. de S. OLIVEIRA and R. A. C. de SOUZA, “Digital trans-
formation towards education 4.0,” Informatics in Education,
vol. 21, no. 2, pp. 283–309, 2022.

[18] C. Hong and W. W. Ma, “Introduction: Education 4.0: Applied
degree education and the future of work,” in Applied Degree
Education and the Future of Work: Education 4.0. Springer,
2020, pp. 1–13.

[19] S. J. Russell and P. Norvig, Artificial intelligence: a modern
approach. Pearson, 2016.

[20] Artificial intelligence (AI) vs. machine learning (ML). Google
Cloud. [Online]. Available: https://cloud.google.com/learn/
artificial-intelligence-vs-machine-learning

[21] S. S. Haykin, Neural networks and learning machines, 3rd ed.
Upper Saddle River, NJ: Pearson Education, 2009.

[22] M. Minsky and S. Papert, Perceptrons: An introduction to
computational geometry. MIT press, 1969.

[23] K. Hornik, M. Stinchcombe, and H. White, “Multilayer
feedforward networks are universal approximators,” Neural
networks, vol. 2, no. 5, pp. 359–366, 1989.

[24] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching
for activation functions,” 2017. [Online]. Available: https:
//arxiv.org/abs/1710.05941

[25] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language
modeling with gated convolutional networks,” in International
conference on machine learning. PMLR, 2017, pp. 933–941.

[26] N. Shazeer, “GLU variants improve transformer,” 2020.
[Online]. Available: https://arxiv.org/abs/2002.05202

[27] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi,
Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale
et al., “Llama 2: Open foundation and fine-tuned chat models,”
2023. [Online]. Available: https://arxiv.org/abs/2307.09288

[28] Meta AI. (2024, Apr) Introducing Meta Llama 3: The most
capable openly available LLM to date. [Online]. Available:
https://ai.meta.com/blog/meta-llama-3/

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all
you need,” Advances in neural information processing systems,
vol. 30, 2017.

[30] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue,
A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison,
S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu,
T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush,
“Transformers: State-of-the-art natural language processing,”
in Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations. Online:
Association for Computational Linguistics, Oct. 2020, pp. 38–
45. [Online]. Available: https://www.aclweb.org/anthology/
2020.emnlp-demos.6

[31] C. Manning. (2020, Sep) Artificial intelligence definitions.
Stanford University Human-Centered Artificial Intelligence.
[Online]. Available: https://hai.stanford.edu/sites/default/
files/2020-09/AI-Definitions-HAI.pdf

[32] I. Goodfellow, Y. Bengio, and A. Courville, Deep
Learning. MIT Press, 2016. [Online]. Available: http:
//www.deeplearningbook.org

[33] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Nature, vol. 323,
no. 6088, pp. 533–536, 1986.

[34] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al.,
“Llama: Open and efficient foundation language models,” 2023.
[Online]. Available: https://arxiv.org/abs/2302.13971

[35] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang,
L. Wang, and W. Chen, “LoRA: Low-Rank Adaptation of
Large Language Models,” 2021. [Online]. Available: https:
//arxiv.org/abs/2106.09685

[36] S. Raschka, “Model evaluation, model selection, and algorithm
selection in machine learning,” 2020. [Online]. Available:
https://arxiv.org/abs/1811.12808

https://www3.weforum.org/docs/WEF_Schools_of_the_Future_Report_2019.pdf
https://www3.weforum.org/docs/WEF_Schools_of_the_Future_Report_2019.pdf
https://drive.google.com/file/d/1HdlvsAmLvVHkPW46_7TqTcHnbn7__gB0/view?usp=share_link
https://drive.google.com/file/d/1HdlvsAmLvVHkPW46_7TqTcHnbn7__gB0/view?usp=share_link
https://sol.sbc.org.br/index.php/sbie/article/view/26674
https://doi.org/10.1007/s10780-022-09476-2
https://doi.org/10.1007/s10780-022-09476-2
https://doi.org/10.1080/10494820.2021.1952615
https://cloud.google.com/learn/artificial-intelligence-vs-machine-learning
https://cloud.google.com/learn/artificial-intelligence-vs-machine-learning
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2307.09288
https://ai.meta.com/blog/meta-llama-3/
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://hai.stanford.edu/sites/default/files/2020-09/AI-Definitions-HAI.pdf
https://hai.stanford.edu/sites/default/files/2020-09/AI-Definitions-HAI.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/1811.12808

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 30

[37] S. M. da Silva Junior, R. A. B. de Freitas, M. A. C. de Morais,
and D. L. V. Costa, “ChatGPT no auxílio da aprendizagem
de programação: Um estudo de caso,” in Anais do XXXIV
Simpósio Brasileiro de Informática na Educação. SBC, 2023,
pp. 1375–1384.

[38] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J.
Bang, A. Madotto, and P. Fung, “Survey of hallucination in
natural language generation,” ACM Computing Surveys, vol. 55,
no. 12, pp. 1–38, 2023.

[39] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT:
Pre-training of deep bidirectional transformers for language
understanding,” 2019. [Online]. Available: https://arxiv.org/
abs/1810.04805

[40] Y. Xu, X. Zhong, A. J. J. Yepes, and J. H. Lau, “Forget me not:
Reducing catastrophic forgetting for domain adaptation in re-
ading comprehension,” in 2020 International Joint Conference
on Neural Networks (IJCNN). IEEE, 2020, pp. 1–8.

[41] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin,
N. Goyal, H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel et al.,
“Retrieval-augmented generation for knowledge-intensive NLP
tasks,” Advances in Neural Information Processing Systems,
vol. 33, pp. 9459–9474, 2020.

[42] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun,
M. Wang, and H. Wang, “Retrieval-augmented generation for
large language models: A survey,” 2024. [Online]. Available:
https://arxiv.org/abs/2312.10997

[43] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig,
“Pre-train, prompt, and predict: A systematic survey of promp-
ting methods in natural language processing,” ACM Computing
Surveys, vol. 55, no. 9, pp. 1–35, 2023.

[44] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester,
N. Du, A. M. Dai, and Q. V. Le, “Finetuned language
models are zero-shot learners,” 2022. [Online]. Available:
https://arxiv.org/abs/2109.01652

[45] A. Kong, S. Zhao, H. Chen, Q. Li, Y. Qin, R. Sun,
X. Zhou, E. Wang, and X. Dong, “Better zero-shot reasoning
with role-play prompting,” 2024. [Online]. Available: https:
//arxiv.org/abs/2308.07702

[46] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora,
S. von Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill
et al., “On the opportunities and risks of foundation models,”
2022. [Online]. Available: https://arxiv.org/abs/2108.07258

[47] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou,
Y. Min, B. Zhang, J. Zhang, Z. Dong et al., “A survey
of large language models,” 2023. [Online]. Available: https:
//arxiv.org/abs/2303.18223

[48] T. Bates, C. Cobo, O. Mariño, and S. Wheeler, “Can artificial
intelligence transform higher education?” pp. 1–12, 2020.

[49] K. K. de Sousa Oliveira, A. da Silva Marcolino, T. P. Falcão, and
E. F. Barbosa, “Ensino e aprendizagem de programação na edu-
cação 4.0: Um mapeamento sistemático da literatura,” Simpósio
Brasileiro de Educação em Computação (EDUCOMP), pp. 245–
255, 2024.

[50] O. Zawacki-Richter, V. I. Marín, M. Bond, and F. Gouverneur,
“Systematic review of research on artificial intelligence applica-
tions in higher education–where are the educators?” Internati-
onal Journal of Educational Technology in Higher Education,
vol. 16, no. 1, pp. 1–27, 2019.

[51] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever
et al., “Language models are unsupervised multitask learners,”
OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[52] AI@Meta, “Llama 3 model card,” 2024. [Online].
Available: https://github.com/meta-llama/llama3/blob/main/
MODEL_CARD.md

[53] H. Inan, K. Upasani, J. Chi, R. Rungta, K. Iyer, Y. Mao,
M. Tontchev, Q. Hu, B. Fuller et al., “Llama Guard: LLM-
based input-output safeguard for Human-AI conversations,”
2023. [Online]. Available: https://arxiv.org/abs/2312.06674

[54] E. Beeching, C. Fourrier, N. Habib, S. Han, N. Lambert,
N. Rajani, O. Sanseviero, L. Tunstall, and T. Wolf, “Open LLM
leaderboard,” 2023. [Online]. Available: https://huggingface.co/
spaces/open-llm-leaderboard/open_llm_leaderboard

[55] X. Li, T. Zhang, Y. Dubois, R. Taori, I. Gulrajani, C. Guestrin,
P. Liang, and T. B. Hashimoto, “AlpacaEval: An Automatic
Evaluator of Instruction-following Models,” 2023. [Online].
Available: https://github.com/tatsu-lab/alpaca_eval

[56] P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Scho-
enick, and O. Tafjord, “Think you have solved question answe-
ring? try ARC, the AI2 reasoning challenge,” 2018.

[57] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi,
“HellaSwag: Can a machine really finish your sentence?” 2019.

[58] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika,
D. Song, and J. Steinhardt, “Measuring massive multitask lan-
guage understanding,” 2021.

[59] K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi, “WINO-
GRANDE: an adversarial winograd schema challenge at scale,”
2019.

[60] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kai-
ser, M. Plappert, J. Tworek, J. Hilton, R. Nakano, C. Hesse, and
J. Schulman, “Training verifiers to solve math word problems,”
2021.

[61] S. Lin, J. Hilton, and O. Evans, “TruthfulQA: Measuring How
Models Mimic Human Falsehoods,” 2022.

[62] AI@Meta, “LLama 3 - 400B,” 2024. [Online]. Available:
https://llama-2.ai/llama-3-400b/

[63] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E.
Tan, Y. Adi, J. Liu, R. Sauvestre, T. Remez, J. Rapin,
A. Kozhevnikov et al., “Code llama: Open foundation models
for code,” 2024. [Online]. Available: https://arxiv.org/abs/
2308.12950

[64] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell
et al., “Language models are few-shot learners,” Advances in
neural information processing systems, vol. 33, pp. 1877–1901,
2020.

[65] P. Zhang, N. Shao, Z. Liu, S. Xiao, H. Qian, Q. Ye, and
Z. Dou, “Extending llama-3’s context ten-fold overnight,” 2024.
[Online]. Available: https://arxiv.org/abs/2404.19553

[66] K. Lee, A. Gangidi, and M. Oldham. Buil-
ding Meta’s GenAI Infrastructure. [Online]. Avai-
lable: https://engineering.fb.com/2024/03/12/data-center-
engineering/building-metas-genai-infrastructure/

[67] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E.
Gonzalez, H. Zhang, and I. Stoica, “Efficient memory manage-
ment for large language model serving with pagedattention,” in
Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

[68] Ollama, “Ollama.” [Online]. Available: https://github.com/
ollama/ollama

[69] G. Gerganov, “llama.cpp: Llm inference in c/c++.” [Online].
Available: https://github.com/ggerganov/llama.cpp

[70] Brasil, “Lei n° 13.709, de 14 de agosto de 2018. Lei Geral
de Proteção de Dados Pessoais (LGPD),” 2018. [Online].
Available: https://www.planalto.gov.br/ccivil_03/_ato2015-
2018/2018/lei/l13709.htm

[71] OpenAccess AI Collective, “Axolotl.” [Online]. Available:
https://github.com/OpenAccess-AI-Collective/axolotl

[72] J. Liu, “LlamaIndex,” 11 2022. [Online]. Available: https:
//github.com/jerryjliu/llama_index

[73] H. Chase, “LangChain,” Oct. 2022. [Online]. Available: https:
//github.com/langchain-ai/langchain

[74] Z. Nussbaum, J. X. Morris, B. Duderstadt, and A. Mulyar,
“Nomic embed: Training a reproducible long context text em-
bedder,” 2024.

[75] J. Chen, S. Xiao, P. Zhang, K. Luo, D. Lian,
and Z. Liu, “BGE M3-embedding: Multi-lingual, multi-
functionality, multi-granularity text embeddings through
self-knowledge distillation,” 2024. [Online]. Available:
https://arxiv.org/abs/2402.03216

[76] D. K. J. L. Sean Lee, Aamir Shakir. (2024) Open source strikes
bread - new fluffy embeddings model. [Online]. Available:
https://www.mixedbread.ai/blog/mxbai-embed-large-v1

[77] L. Wang, N. Yang, X. Huang, L. Yang, R. Majumder, and
F. Wei, “Multilingual E5 text embeddings: A technical report,”
Tech. Rep., 2024.

[78] ——, “Improving text embeddings with large language models,”
arXiv preprint arXiv:2401.00368, 2023.

[79] Y.-A. L. Borgne, “OpenAI vs open-source multi-
lingual embedding models,” 2024. [Online]. Availa-
ble: https://towardsdatascience.com/openai-vs-open-source-
multilingual-embedding-models-e5ccb7c90f05

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2308.07702
https://arxiv.org/abs/2308.07702
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2312.06674
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://github.com/tatsu-lab/alpaca_eval
https://llama-2.ai/llama-3-400b/
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2404.19553
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/
https://github.com/ollama/ollama
https://github.com/ollama/ollama
https://github.com/ggerganov/llama.cpp
https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm
https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm
https://github.com/OpenAccess-AI-Collective/axolotl
https://github.com/jerryjliu/llama_index
https://github.com/jerryjliu/llama_index
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://arxiv.org/abs/2402.03216
https://www.mixedbread.ai/blog/mxbai-embed-large-v1
https://towardsdatascience.com/openai-vs-open-source-multilingual-embedding-models-e5ccb7c90f05
https://towardsdatascience.com/openai-vs-open-source-multilingual-embedding-models-e5ccb7c90f05

TRABALHO DE CONCLUSÃO DE CURSO, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL, JULHO DE 2024 31

[80] “Designing an open-source LLM interface and social platforms
for collectively driven LLM evaluation and auditing,”
OpenWebUI. [Online]. Available: https://openwebui.com/
assets/files/whitepaper.pdf

[81] python filesystem spec, “filesystem_spec.” [Online]. Available:
https://github.com/fsspec/filesystem_spec

[82] A. Bozkurt, “Tell me your prompts and I will make them true:
The alchemy of prompt engineering and generative AI,” pp. 111–
118, 2024.

[83] S. M. Bsharat, A. Myrzakhan, and Z. Shen, “Principled
instructions are all you need for questioning LLaMA-1/2,
GPT-3.5/4,” 2024. [Online]. Available: https://arxiv.org/abs/
2312.16171

[84] L. S. Lo, “The art and science of prompt engineering: A new
literacy in the information age,” Internet Reference Services
Quarterly, vol. 27, no. 4, pp. 203–210, 2023. [Online]. Available:
https://doi.org/10.1080/10875301.2023.2227621

[85] ——, “The CLEAR path: A framework for enhancing infor-
mation literacy through prompt engineering,” The Journal of
Academic Librarianship, vol. 49, no. 4, p. 102720, 2023.

[86] Prompt engineering. OpenAI. [Online]. Available: https://
platform.openai.com/docs/guides/prompt-engineering

[87] L. Beurer-Kellner, M. Fischer, and M. Vechev, “Prompting is
programming: A query language for large language models,”
Proceedings of the ACM on Programming Languages, vol. 7,
no. PLDI, pp. 1946–1969, Jun. 2023. [Online]. Available:
http://dx.doi.org/10.1145/3591300

[88] K. Mao, Z. Dou, F. Mo, J. Hou, H. Chen, and H. Qian,
“Large language models know your contextual search intent: A
prompting framework for conversational search,” 2023. [Online].
Available: https://arxiv.org/abs/2303.06573

[89] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi,
Q. V. Le, D. Zhou et al., “Chain-of-thought prompting elicits
reasoning in large language models,” Advances in neural infor-
mation processing systems, vol. 35, pp. 24 824–24 837, 2022.

[90] What is a Web Application Firewall (WAF)? Cloudflare.
[Online]. Available: https://www.cloudflare.com/learning/
ddos/glossary/web-application-firewall-waf/

Uso de Inteligência Artificial
Este trabalho utilizou Inteligência Artificial (IA) para
correção de textos.

Rafael Almeida de Bem Aluno de Ciência da Computação na Pon-
tifícia Universidade Católica do Rio Grande do Sul (PUCRS). Possui
interesse em Inteligência Artificial e Aprendizado de Máquina. Tem
experiência em desenvolvimento de software back-end, manutenção
de infraestrutura e automação de processos.

https://openwebui.com/assets/files/whitepaper.pdf
https://openwebui.com/assets/files/whitepaper.pdf
https://github.com/fsspec/filesystem_spec
https://arxiv.org/abs/2312.16171
https://arxiv.org/abs/2312.16171
https://doi.org/10.1080/10875301.2023.2227621
https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering
http://dx.doi.org/10.1145/3591300
https://arxiv.org/abs/2303.06573
https://www.cloudflare.com/learning/ddos/glossary/web-application-firewall-waf/
https://www.cloudflare.com/learning/ddos/glossary/web-application-firewall-waf/

	Introdução
	Conceitos de Inteligência Artificial
	Inteligência Artificial
	Redes neurais
	Função de ativação

	Transformers
	Hugging Face Transformers

	Aprendizado de máquina
	Aprendizado supervisionado
	Aprendizado não-supervisionado
	Aprendizado por reforço

	Processamento de Linguagem Natural
	Inteligência Artificial Generativa
	Generative Pre-Trained Transformers (GPT)

	Fine-tuning e transfer learning
	Retrieval-Augmented Generation
	Prompt-based tuning em LLMs

	Trabalhos relacionados e revisão da literatura
	Large language models in education: A focus on the complementary relationship between human teachers and ChatGPT (2023)
	ChatGPT for good? On opportunities and challenges of large language models for education (2023)
	ChatGPT no auxílio da aprendizagem de programação: um estudo de caso (2023)
	Ensino de Programação Orientada a Objetos Para Iniciantes: Uma Metodologia para Programação Criativa (2023)
	Can artificial intelligence transform higher education? (2020)
	Análise dos trabalhos estudados
	Conexões com o trabalho desenvolvido

	Trabalho desenvolvido
	Pensamento computacional e evasão em cursos de computação
	IA no apoio ao aprendizado
	Escolha do modelo de IA
	Open LLM Leaderboard
	AlpacaEval 2.0

	LLaMA 3
	Segurança

	Execução local de um LLM
	Nota importante sobre o execução remota e dados sigilosos

	Métricas de avaliação
	Protocolo de teste manual

	Programação do sistema
	Técnicas de extensão de conhecimento
	Sobre fine-tuning

	Sobre RAG
	Escolha do modelo de embedding
	Preparação dos dados
	LlamaIndex e adicionais
	Interface web
	O que são pipelines?
	LlamaIndex e a OpenWebUI
	Integração do LlamaIndex à pipeline
	Modificação da prompt de sistema do modelo
	Hiperparâmetros do LLM e outras opções
	Fluxo básico de dados
	Integração com sistemas de learning analytics

	Implantação em ambientes de teste
	Ambiente local

	Implantação em ambiente de produção
	Integração com o Moodle

	Infraestrutura utilizada
	Resultados e contribuições
	Resultados obtidos
	Problemas enfrentados

	Limitações
	Limitações de escopo
	Limitações técnicas

	Considerações finais
	Trabalhos futuros
	Referências
	Biographies
	Rafael Almeida de Bem

